Thymol is a monoterpene phenolic derivative extracted from the Thymus vulgaris which has antimicrobial effects. In the present study, thymol-loaded chitosan nanogels were prepared and their physicochemical properties were characterized. The encapsulation efficiency of thymol into chitosan and its stability were determined. The in vitro antimicrobial and anti-biofilm activities of thymol-loaded chitosan nanogel (Ty-CsNG), free thymol (Ty), and free chitosan nanogel (CsNG) were evaluated against both Gram-negative and Grampositive multidrug-resistant (MDR) bacteria including Staphylococcus aureus, Acinetobacter baumanii, and Pseudomonas aeruginosa strains using the broth microdilution and crystal violet assay, respectively. After treatment of MDR strains with sub-minimum inhibitory concentration (Sub-MIC) of Ty-CsNG, free Ty and CsNG, biofilm gene expression analysis was studied. Moreover, cytotoxicity of Ty-CsNG, free Ty, and CsNG against HEK-293 normal cell line was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method. The average size of Ty-CsNG was 82.71 � 9.6 nm, encapsulation efficiency was 76.54 � 0.62 % with stability up to 60 days at 4 °C. Antibacterial activity test revealed that Ty-CsNG reduced the MIC by 4 -6 times in comparison to free thymol. In addition, the expression of biofilm-related genes including ompA, and pgaB were significantly down-regulated after treatment of strains with Ty-CsNG (P < 0.05). In addition, free CsNG displayed negligible cytotoxicity against HEK-293 normal cell lines and presented a biocompatible nanoscale delivery system. Based on the results, it can be concluded that Ty-CsNG can be considered a promising candidate for enhancing antimicrobial and anti-biofilm activities.
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Background: Infectious coryza (IC) is an invasive upper respiratory disease caused by Avibacterium paragallinarum that affects birds, particularly chickens. The objective of this study is to isolate, characterize and molecularly identify the bacterium A. paragallinarum in poultry birds, as well as to determine its antibiotic sensitivity and resistance.Methods: A total of 10 chickens from four different Iranian farms with typical IC symptoms were used in this study. The nasal swabs were streaked onto chocolate agar plates and blood agar plates and incubated at 37 • C in 5% CO 2 for 24 to 48 h. As part of the identification of bacteria, bacteriological observations and polymerase chain reaction (PCR) testing are conducted. The antibiotic sensitivity tests were also performed using the disk diffusion method against A. paragallinarum and the prevalence in different farms was determined.Results: By using biochemical assays and PCR analyses, seven strains of A. paragallinarum were isolated from samples of four chicken farms with typical IC clinical signs.Most isolates (4/7) showed the typical requirement for nicotinamide adenine dinucleotide (NAD) and an enriched CO 2 atmosphere for growth. Three of the seven strains of A. paragallinarum were found to be novel NAD-independent under anaerobic conditions. There was one biochemical biovar identified in terms of carbohydrate fermentation patterns, although changes in maltose carbohydrate fermentation patterns were detected in the No. 5 strain. All isolates were sensitive to gentamicin and spectinomycin. Three novel NAD-independent strains (Nos.1, 5 and 7) were found to be multidrug-resistant (MDR) and resistant to at least three classes of antibiotics. There was greater antibiotic resistance in the three NAD-independent isolates than in normal NAD-dependent bacteria. Conclusion:By discovering NAD-independent forms of A. paragallinarum, these species have a greater range than previously believed. A clear, cautious approach should be taken in diagnosing and possibly controlling IC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.