Antibodies are important for immunity and exist in several classes (IgM, IgD, IgA, IgG, IgE). They are composed of symmetric dimeric molecules with two antigen binding regions (Fab) and a constant part (Fc), usually depicted as Y-shaped molecules. Rheumatoid factors found in patients with rheumatoid arthritis are autoantibodies binding to IgG and paradoxically appear to circulate in blood alongside with their antigen (IgG) without reacting with it. Here, it is shown that rheumatoid factors do not react with native IgG in solution, and that their epitopes only become accessible upon certain physico-chemical treatments (e.g. heat treatment at 57 °C), by physical adsorption on a hydrophobic surface or by antigen binding. Moreover, chemical cross-linking in combination with mass spectrometry showed that the native state of IgG is a compact (closed) form and that the Fab parts of IgG shield the Fc region and thereby control access of rheumatoid factors and presumably also some effector functions. It can be inferred that antibody binding to pathogen surfaces induces a conformational change, which exposes the Fc part with its effector sites and rheumatoid factor epitopes. This has strong implications for understanding antibody structure and physiology and necessitates a conceptual reformulation of IgG models.
Protein sequencing by mass spectrometry has transformed the field of biopharmaceutical analysis, but a missing part in the analytical toolkit is the ability to distinguish between the isomeric residues isoleucine and leucine because it is a requisite for efficient analysis of the primary structure of proteins. To address this need, we have developed a novel mass spectrometric method that combines reductive dimethylation and MS3 fragmentation with LCMS peptide mapping. The dimethylation of peptide N-termini leads to intense a1-ions upon collision-induced fragmentation, and further fragmentation of the isoleucine/leucine a1-ion leads to informative spectra with fragments that can discriminate between the two isomers. The methodology of a1-directed MS3 was applied to two antibodies in combination with the proteases trypsin, thermolysin, chymotrypsin, and pepsin to generate peptides exposing N-terminal I/L residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.