BackgroundTo study the role of African buffalos (Syncerus caffer) in the maintenance of foot-and-mouth disease in Uganda, serum samples were collected from 207 African buffalos, 21 impalas (Aepyceros melampus), 1 giraffe (Giraffa camelopardalis), 1 common eland (Taurotragus oryx), 7 hartebeests (Alcelaphus buselaphus) and 5 waterbucks (Kobus ellipsiprymnus) from four major National Parks in Uganda between 2005 and 2008. Serum samples were screened to detect antibodies against foot-and-mouth disease virus (FMDV) non-structural proteins (NSP) using the Ceditest® FMDV NS ELISA. Solid Phase Blocking ELISAs (SPBE) were used to determine the serotype-specificity of antibodies against the seven serotypes of FMDV among the positive samples. Virus isolation and sequencing were undertaken to identify circulating viruses and determine relatedness between them.ResultsAmong the buffalo samples tested, 85% (95% CI = 80-90%) were positive for antibodies against FMDV non-structural proteins while one hartebeest sample out of seven (14.3%; 95% CI = -11.6-40.2%) was the only positive from 35 other wildlife samples from a variety of different species. In the buffalo, high serotype-specific antibody titres (≥ 80) were found against serotypes O (7/27 samples), SAT 1 (23/29 samples), SAT 2 (18/32 samples) and SAT 3 (16/30 samples). Among the samples titrated for antibodies against the four serotypes O, SAT 1, SAT 2 and SAT 3, 17/22 (77%; CI = 59.4-94.6%) had high titres against at least two serotypes.FMDV isolates of serotypes SAT 1 (1 sample) and SAT 2 (2 samples) were obtained from buffalo probang samples collected in Queen Elizabeth National Park (QENP) in 2007. Sequence analysis and comparison of VP1 coding sequences showed that the SAT 1 isolate belonged to topotype IV while the SAT 2 isolates belonged to different lineages within the East African topotype X.ConclusionsConsistent detection of high antibody titres in buffalos supports the view that African buffalos play an important role in the maintenance of FMDV infection within National Parks in Uganda. Both SAT 1 and SAT 2 viruses were isolated, and serological data indicate that it is also likely that FMDV serotypes O and SAT 3 may be present in the buffalo population. Detailed studies should be undertaken to define further the role of wildlife in the epidemiology of FMDV in East Africa.
Foot-and-mouth disease (FMD) is endemic in Uganda with control strategies focusing on vaccination of cattle, while small ruminants are largely ignored. In order for Uganda to establish effective control strategies, it is crucial that the epidemiology of the disease is fully understood. This study summarizes results of serological investigations of sheep and goats for antibodies to FMDV from four districts in 2006 following an FMD outbreak in the region and from an attempted comprehensive random sampling in two districts in 2007. Antibodies were quantified and serotyped using competitive ELISA for antibodies towards non-structural proteins (NSP) and structural proteins towards serotype O, and blocking ELISA for antibodies towards the seven serotypes of FMD virus (FMDV). In 2006, sheep and goats in Bushenyi and Isingiro districts were free from antibodies towards FMDV, while herds in Kasese and Mbarara districts excluding Kahendero village were all positive for antibodies towards NSP and SP-O. In 2007, mean prevalence estimates of antibodies towards FMDV NSP was 14% in goats and 22% in sheep in Kasese district, while Bushenyi was still free. The difference between these two districts probably reflects different levels of FMDV challenge attributed to the variation in exposure rates which again in part may be as a result of the differing husbandry practices. Contrary to 2006, with clear antibodies towards serotype O, the serotype-specificity of the antibodies was less clear in 2007, as antibodies towards both serotype O and SAT serotypes were identified. Our results show that goats and sheep are infected during FMD outbreaks, and that they may be useful for determining the serotype of FMD outbreaks in Uganda, if they are sampled shortly after an outbreak.
Uganda had an unusually large number of foot-and-mouth disease (FMD) outbreaks in 2006, and all clinical reports were in cattle. A serological investigation was carried out to confirm circulating antibodies against foot-and-mouth disease virus (FMDV) by ELISA for antibodies against non-structural proteins and structural proteins. Three hundred and forty-nine cattle sera were collected from seven districts in Uganda, and 65% of these were found positive for antibodies against the non-structural proteins of FMDV. A subset of these samples were analysed for serotype specificity of the identified antibodies. High prevalences of antibodies against non-structural proteins and structural proteins of FMDV serotype O were demonstrated in herds with typical visible clinical signs of FMD, while prevalences were low in herds without clinical signs of FMD. Antibody titres were higher against serotype O than against serotypes SAT 1, SAT 2 and SAT 3 in the sera investigated for serotype-specific antibodies. Only FMDV serotype O virus was isolated from one probang sample. This study shows that the majority of the FMD outbreaks in 2006 in the region studied were caused by FMDV serotype O; however, there was also evidence of antibodies to both SAT 1 and SAT 3 in one outbreak in a herd inside Queen Elizabeth national park area.
SUMMARYMost viruses are maintained by complex processes of evolution that enable them to survive but also complicate efforts to achieve their control. In this paper, we study patterns of evolution in foot-and-mouth disease (FMD) serotype C virus isolates from Kenya, one of the few places in the world where serotype C has been endemic and is suspected to remain. The nucleotide sequences encoding the capsid protein VP1 from eight isolates collected between 1967 and 2004 were analysed for patterns of sequence divergence and evolution. Very low nucleotide diversity (π=0·0025) and remarkably little change (only five segregating sites and three amino-acid changes) were observed in these isolates collected over a period of almost 40 years. We interpret these results as being suggestive of re-introductions of the vaccine strain into the field. The implications of these results for the maintenance of serotype C FMD virus and the use of vaccination as a control measure in Kenya are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.