SUMMARY The cerebellum stores associative motor memories essential for properly timed movement; however, the mechanisms by which these memories form and are acted upon remain unclear. To determine how cerebellar activity relates to movement and motor learning, we used optogenetics to manipulate spontaneously firing Purkinje neurons (PNs) in mouse simplex lobe. Using high-speed videography and motion tracking, we found that altering PN activity produced rapid forelimb movement. PN inhibition drove movements time-locked to stimulus onset, whereas PN excitation drove delayed movements time-locked to stimulus offset. Pairing either PN inhibition or excitation with sensory stimuli triggered the formation of robust, associative motor memories; however, PN excitation led to learned movements whose timing more closely matched training intervals. These findings implicate inhibition of PNs as a teaching signal, consistent with a model whereby learning leads first to reductions in PN firing that subsequently instruct circuit changes in the cerebellar nucleus.
Decreased dendritic spine density in the cortex is a hallmark of several neuropsychiatric diseases, and the ability to promote cortical neuron growth has been hypothesized to underlie the rapid and sustained therapeutic effects of psychedelics. Activation of 5-hydroxytryptamine (serotonin) 2A receptors (5-HT2ARs) is essential for psychedelic-induced cortical plasticity, but it is currently unclear why some 5-HT2AR agonists promote neuroplasticity, whereas others do not. We used molecular and genetic tools to demonstrate that intracellular 5-HT2ARs mediate the plasticity-promoting properties of psychedelics; these results explain why serotonin does not engage similar plasticity mechanisms. This work emphasizes the role of location bias in 5-HT2AR signaling, identifies intracellular 5-HT2ARs as a therapeutic target, and raises the intriguing possibility that serotonin might not be the endogenous ligand for intracellular 5-HT2ARs in the cortex.
We recently reported that fear extinction, a form of inhibitory learning, is selectively blocked by systemic administration of L-type voltage-gated calcium channel (LVGCC) antagonists, including nifedipine, in mice. We here replicate this finding and examine three reduced contingency effects after vehicle or nifedipine (40 mg/kg) administration. In the first experiment, contingency reduction was achieved by adding USs to the training protocol (degraded contingency), a phenomenon thought to be independent of behavioral inhibition. In the second experiment, contingency reduction was achieved by varying the percentage of CS-US pairing, a phenomenon thought to be weakly dependent on behavioral inhibition. In the third and fourth experiments, contingency reduction was achieved by adding CSs to the training protocol (partial reinforcement), a phenomenon thought to be completely dependent on behavioral inhibition. We found that none of these reduced contingency effects was impaired by nifedipine. In a final experiment, we found that extinction conducted 1 or 3 h post-acquisition, but not immediately, was LVGCC-dependent. Taken together, the results suggest that reduced contingency effects and extinction depend on different molecular mechanisms and that LVGCC dependence of behavioral inhibition develops with time after associative CS-US learning.Pavlovian fear conditioning in rodents has been widely used in the laboratory setting to model human fear and anxiety, as well as excitatory learning and memory processes (Fendt and Fanselow 1999;Maren 2001;Ohman and Mineka 2001;Fanselow and Gale 2003;LeDoux 2003). Fear conditioning is achieved by temporally pairing an initially neutral conditional stimulus (CS), such as a tone, with an aversive unconditional stimulus (US), usually a mild footshock. Rats show robust fear responding to a CS with as little as one CS-US pairing (Fanselow 1990). Extinction of conditional fear, the progressive weakening of the fear response by repeated presentations of the CS alone, has been an important model in the development of behavior therapy for human anxiety disorders (Wolpe 1969;Wolpe and Rowan 1988;Craske 1999;Myers and Davis 2002) and is the prototypical procedure for inducing inhibitory learning (Davis et al. 2003;Delamater 2004).While the molecular and cellular mechanisms of fear acquisition have been intensely studied for decades, the mechanisms of fear extinction are only beginning to be unraveled. For instance, lesion and local infusion studies suggest that the amygdala (Falls et al. 1992;Quirk et al. 1997;Lu et al. 2001;Marsicano et al. 2002;Royer and Pare 2002;Walker et al. 2002;Davis et al. 2003;Ledgerwood et al. 2003; Lin et al. 2003a,b,c) and prefrontal cortex (Morgan et al. 1993;Quirk et al. 2000;Herry and Garcia 2002;Milad and Quirk 2002;Santini et al. 2004;Shah et al. 2004) participate in the learning and retention of fear extinction. Additionally, both local infusion and systemic behavioral pharmacology studies have identified important roles in extinction for the NMDA-type ...
Behavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus. We find that, although basal synaptic transmission is similar, SC synapses in the dorsal and ventral hippocampus exhibit markedly different responses to frequency patterns of stimulation. In contrast to dorsal hippocampus, frequency stimulation fails to elicit postsynaptic complex-spike bursting and does not induce LTP at ventral SC synapses. Moreover, EPSP-spike coupling, a process that strongly influences information transfer at synapses, is weaker in ventral pyramidal cells. Our results indicate that all these differences in postsynaptic function are due to an enhanced activation of SK-type K ϩ channels that suppresses NMDAR-dependent EPSP amplification at ventral SC synapses. Consistent with this, mRNA levels for the SK3 subunit of SK channels are significantly higher in ventral CA1 pyramidal cells. Together, our findings indicate that a dorsal-ventral difference in SK channel regulation of NMDAR activation has a profound effect on the transmission, processing, and storage of information at SC synapses and thus likely contributes to the distinct roles of the dorsal and ventral hippocampus in different behaviors.
Previous studies have provided strong support for the notion that NMDAR-mediated increases in postsynaptic Ca2ϩ have a crucial role in the induction of long-term depression (LTD). This view has recently been challenged, however, by findings suggesting that LTD induction is instead attributable to an ion channel-independent, metabotropic form of NMDAR signaling. Thus, to explore the role of ionotropic versus metabotropic NMDAR signaling in LTD, we examined the effects of varying extracellular Ca 2ϩ levels or blocking NMDAR channel ion fluxes with MK-801 on LTD and NMDAR signaling in the mouse hippocampal CA1 region. We find that the induction of LTD in the adult hippocampus is highly sensitive to extracellular Ca 2ϩ levels and that MK-801 blocks NMDAR-dependent LTD in the hippocampus of both adult and immature mice. Moreover, MK-801 inhibits NMDAR-mediated activation of p38-MAPK and dephosphorylation of AMPAR GluA1 subunits at sites implicated in LTD. Thus, our results indicate that the induction of LTD in the hippocampal CA1 region is dependent on ionotropic, rather than metabotropic, NMDAR signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.