The role of microfilaments and microtubules during injury-induced cell migration of corneal endothelial cells in situ along their natural basement membrane has been investigated using organ culture. In the noninjured tissue, actin is localized at or near the plasma membrane, whereas tubulin is observed as a delicate lattice pattern throughout the cytoplasm. Twenty-four hours after a circular freeze injury, cells surrounding the wound area extend processes into this region. Fluorescent microscopy using phallotoxins and anti-tubulin antibodies demonstrated the presence of stress fibers and microtubule reorganization within these cells. Between 24 and 48 h post-injury endothelial cells move into the wound region, and by 48 h, the injury zone is repopulated and the monolayer is becoming reestablished. When injured corneas are placed in media containing 5 x 10(-7) M cytochalasin B, endothelial cell migration occurs; but it is slow, and wound closure is not complete even by 72 h. In contrast, when tissues are cultured in the presence of 10(-8) M colchicine, cell movement is greatly reduced, complete wound closure does not occur, and endothelial cells at the wound edge fail to display extensions typical of migrating cells. Furthermore, when injured endothelia are exposed to 0.05 micrograms/ml of actinomycin D for 15 min within the first hour after injury and transferred back into culture media lacking the drug for the duration of the experiment, migration does not occur and the wound persists. These actinomycin D treated cells remain viable as shown by their ability to incorporate 3H-uridine and 3H-thymidine. Fluorescence microscopy of actinomycin D treated tissues revealed the presence of stress filaments but disorganized microtubule patterns. Interestingly, 24 h after injury, if the tissue is exposed to actinomycin D, even for periods of up to 1 h, migration is not inhibited. Our results indicate that injury-induced endothelial cell movement appears to be more dependent on microtubule than microfilament reorganization and may require a critical timing of macromolecular synthesis.
Fluorochrome conjugated lectins were used to observe cell surface changes in the corneal endothelium during wound repair in the adult rat and during normal fetal development. Fluorescence microscopy of non-injured adult corneal endothelia incubated in wheat-germ agglutinin (WGA), Concanavalin A (Con A), and Ricinus communis agglutinin I (RCA), revealed that these lectins bound to cell surfaces. Conversely, binding was not observed for either Griffonia simplicifolia I (GS-I), soybean agglutinin (SBA) or Ulex europaeus agglutinin (UEA). Twenty-four hours after a circular freeze injury, endothelial cells surrounding the wound demonstrated decreased binding for WGA and Con A, whereas, RCA binding appeared reduced but centrally clustered on the apical cell surface. Furthermore, SBA now bound to endothelial cells adjacent to the wound area, but not to cells near the tissue periphery. Neither GS-I nor UEA exhibited any binding to injured tissue. By 48 h post-injury, the wound area repopulates and endothelial cells begin reestablishing the monolayer. These cells now exhibit increased binding for WGA, especially along regions of cell-to-cell contact, whereas, Con A, RCA and SBA binding patterns remain unchanged. Seventy-two hours after injury, the monolayer is well organized with WGA, Con A and RCA binding patterns becoming similar to those observed for non-injured tissue. However, at this time, SBA binding decreases dramatically. By 1 week post-injury, binding patterns for WGA, ConA and RCA closely resemble their non-injured counterparts while SBA continues to demonstrate low levels of binding. In early stages of its development, the endothelium actively proliferates and morphologically resembles adult tissue during wound repair.(ABSTRACT TRUNCATED AT 250 WORDS)
The distribution of fibronectin (FN) and laminin (LM) in non-injured and injured rat corneal endothelium in vivo was investigated by light microscopy using immunoperoxidase cytochemistry. In non-injured tissues, both FN and LM have distinct pericellular staining patterns and exhibit some diffuse cytoplasmic staining. After a circular freeze injury, cells migrating into the wound area at 24 hr lack the characteristic pericellular staining observed in non-injured cells but show cytoplasmic staining for both extracellular matrix glycoproteins. Endothelial cells on the periphery of such preparations do not partake in wound repair and retain their pericellular staining patterns. Forty-eight hours after injury, cells have filled in the wound area but are disorganized. They display intracellular FN and LM staining but do not demonstrate any pericellular staining. When observed 10 days after injury, a uniform monolayer has formed but neither FN nor LM is detected pericellularly. By 14 days post injury, endothelial cells in the wound area display pericellular FN patterns but not LM patterns. This may reflect differences in the function of each glycoprotein in maintaining the attachment of the endothelium to Descemet's membrane.
The fluorescent derivative of the actin-binding toxin phallacidin, 7-nitrobenz-2-oxa-1,3 diazole phallacidin, has been used to cytologically demonstrate the presence of actin in lens epithelium, corneal endothelium, and retinal pigment epithelium. In these noninjured tissues, no stress fibers are observed and fluorescence is confined mainly to an area at or near the cell membrane, although some diffuse cytoplasmic staining can also be seen. However, following injury to either the lens epithelium or corneal endothelium of rats and frogs, stress fibers are detected, but only in those cells that migrate into the wound area. Cells on the periphery of each tissue do not partake in would repair and thus maintain their normal appearance. After the tissue has regenerated, stress fibers disappear, and those cells involved in the injury response return to their normal morphology. When rabbit corneal endothelium is placed in tissue culture, stress fibers are observed as the cells migrate away from the initial explant. Upon reaching confluency, these cells spread out and each is surrounded by thick actin-containing bands. Furthermore, they exhibit some stress cables within their cytoplasm. This is in contrast to their appearance in vivo where stress fibers are absent and fluorescence is limited to a region near the cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.