Recent research findings have strongly suggested that sport-related concussion (SRC) increases risk for subsequent injury of any type, as well as a potential for long-term adverse effects on neurological and psychological well-being. The primary purpose of this study was to explore the reliability and discriminatory power of clinical testing procedures for detecting persisting effects of SRC. We used a cross-sectional study design to assess both self-reported symptoms commonly associated with post-concussion syndrome, and the effects of mental or physical activity on metrics derived from a smartphone app designed to test perceptual-motor responses. Among 30 physically active college students, 15 participants reported a SRC occurrence prior to testing ( M time-since-injury = 4.0 years, SD = 3.1, range = 5 months to 11 years). We found good test-retest reliability for key metrics derived from the smartphone app (ICC ≥ .70); and the internal consistency for the Overall Wellness Index (OWI) for 10 categories of 82 post-concussion symptoms was ideal (Cronbach’s α ≥ .80). Moderate intensity treadmill running demonstrated the strongest differential effect on perceptual-motor responses between participants with a history of SRC (HxSRC) and those with no such history (No SRC), which was best represented by the speed-accuracy trade-off quantified by the inverse efficiency index (IEI: group X trial interaction p = .055). Self-reported OWI symptoms ≥4 and post-physical activity IEI ≥ 568 ms provided the strongest discrimination between HxSRC and NoSRC participants (≥1 versus 0: OR = 9.75). Our findings suggest that persisting effects from a remote SRC occurrence can be detected by easily administered screening procedures that have the potential to identify individual athletes who might derive benefit from interventions to restore their optimal function and well-being.
TrA PAR increased after a single session of exercises, whereas no thickness changes occurred in LM.
Recent epidemiological studies have documented increased susceptibility to musculoskeletal injury after sport-related concussion, which raises questions about the adequacy of current clinical practices to ensure safe return to sport. A growing body of evidence derived from advanced neuroimaging and neurological assessment methods strongly suggests that mild traumatic brain injury has long-lasting adverse effects that persist beyond resolution of clinical symptoms. Plausible interrelationships among postconcussion changes in brain structure and function support the rationale for specific methods of clinical assessment and training to target the interaction of cognitive and motor function for reduction of musculoskeletal injury risk after concussion. The findings of preliminary clinical studies are presented to support suggested strategies for reduction of postconcussion musculoskeletal injury risk, and to identify novel approaches that we consider worthy areas for further research.
There were decreases in muscle activation in the anterior deltoid between previously injured and healthy people, as well as in the lower trapezius, in previously injured subjects. Understanding the source of muscle-activation deficits can help clinicians focus rehabilitation exercises on specific muscles.
Context: An Optimizing Performance through Intrinsic Motivation and Attention for Learning theory-based motor learning intervention delivering autonomy support and enhanced expectancies (EE) shows promise for reducing cognitive-motor dual-task costs, or the relative difference in primary task performance when completed with and without a secondary cognitive task, that facilitate adaptive injury-resistant movement response. The current pilot study sought to determine the effectiveness of an autonomy support versus an EE-enhanced virtual reality motor learning intervention to reduce dual-task costs during single-leg balance. Design: Within-subjects 3 × 3 trial. Methods: Twenty-one male and 24 female participants, between the ages of 18 and 30 years, with no history of concussion, vertigo, lower-extremity surgery, or lower-extremity injuries the previous 6 months, were recruited for training sessions on consecutive days. Training consisted of 5 × 8 single-leg squats on each leg, during which all participants mimicked an avatar through virtual reality goggles. The autonomy support group chose an avatar color, and the EE group received positive kinematic biofeedback. Baseline, immediate, and delayed retention testing consisted of single-leg balancing under single- and dual-task conditions. Mixed-model analysis of variances compared dual-task costs for center of pressure velocity and SD between groups on each limb. Results: On the right side, dual-task costs for anterior–posterior center of pressure mean and SD were reduced in the EE group (mean Δ = −51.40, Cohen d = 0.80 and SD Δ = −66.00%, Cohen d = 0.88) compared with the control group (mean Δ = −22.09, Cohen d = 0.33 and SD Δ = −36.10%, Cohen d = 0.68) from baseline to immediate retention. Conclusions: These findings indicate that EE strategies that can be easily implemented in a clinic or sport setting may be superior to task-irrelevant AS approaches for influencing injury-resistant movement adaptations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.