Several cobalt nitrosyl porphyrins of the form (T(p/m-X)PP)Co(NO) (p/m-X = p-OCH(3) (1), p-CH(3) (2), m-CH(3) (3), p-H (4), m-OCH(3) (5), p-OCF(3) (6), p-CF(3) (7), p-CN (8)) have been synthesized in 30-85% yields by reaction of the precursor cobalt porphyrin with nitric oxide. Compounds 1-7 were also prepared by reaction of the precursor cobalt porphyrin with nitrosonium tetrafluoroborate followed by reduction with cobaltocene. Compounds 1-8 have been characterized by elemental analysis, IR and (1)H NMR spectroscopy, mass spectrometry, and UV-vis spectrophotometry. They are diamagnetic and display nu(NO) bands in CH(2)Cl(2) between 1681 and 1695 cm(-)(1). The molecular structure of 1, determined by a single-crystal X-ray crystallographic analysis, reveals a Co-N-O angle of 119.6(4) degrees. Crystals of 1 are monoclinic, P2/c, with a = 15.052(1) Å, b = 9.390(1) Å, c = 16.274(2) Å, beta = 111.04(1) degrees, V = 2146.8(4) Å(3), Z = 2, T = 228(2) K, D(calcd) = 1.271 g cm(-)(3), and final R1 = 0.0599 (wR2 = 0.1567, GOF = 1.054) for 3330 "observed" reflections with I >/= 2sigma(I). Cyclic voltammetry studies in CH(2)Cl(2) reveal that compounds 1-7 undergo two reversible oxidations and two reversible reductions at low temperature. This is not the case for compound 8, which undergoes two reversible reductions but an irreversible oxidation due to adsorption of the oxidized product onto the electrode surface. Combined electrochemistry-infrared studies demonstrate that each of the compounds 1-7 undergoes a first oxidation at the porphyrin pi ring system and a first reduction at either the metal center or the nitrosyl axial ligand. The formulation for the singly oxidized products of compounds 1-7 as porphyrin pi-cation radicals was confirmed by the presence of bands in the 1289-1294 cm(-)(1) region (for compounds 1-5), which are diagnostic IR bands for generation of tetraarylporphyrin pi-cation radicals.