Human posture recognition technology is widely used in the fields of healthcare, human-computer interaction, and sports. The use of a Frequency-Modulated Continuous Wave (FMCW) millimetre-wave (MMW) radar sensor in measuring human posture characteristics data is of great significance because of its robust and strong recognition capabilities. This paper demonstrates how human posture characteristics data are measured, classified, and identified using FMCW techniques. First of all, the characteristics data of human posture is measured with the MMW radar sensors. Secondly, the point cloud data for human posture is generated, considering both the dynamic and static features of the reflected signal from the human body, which not only greatly reduces the environmental noise but also strengthens the reflection of the detected target. Lastly, six different machine learning models are applied for posture classification based on the generated point cloud data. To comparatively evaluate the proper model for point cloud data classification procedure—in addition to using the traditional index—the Kappa index was introduced to eliminate the effect due to the uncontrollable imbalance of the sampling data. These results support our conclusion that among the six machine learning algorithms implemented in this paper, the multi-layer perceptron (MLP) method is regarded as the most promising classifier.
Mitigating fatigue damage and improving grasping performance are the two main challenging tasks of applying the soft manipulator into industrial production. In this paper, the grasping position optimization-based control strategy is proposed for the soft manipulator and the corresponding characteristics are studied theoretically and experimentally. Specifically, based on the simulation, the resultant stress of step-function-type channels at the same pressure condition that was smallest compared with those of sine-function- and ramp-function-type channels, hence, a pneumatic network with step-function-type channels was selected for the proposed soft manipulator. Furthermore, in order to improve the grasping performance, the kinematics, mechanical, and grasping modeling for the soft manipulator were established, and a control strategy considering the genetic algorithm is introduced to detect the optimal position of the soft manipulator. The corresponding fabrication process and experiments were conducted to cross verify the results of the modeling and the control strategy. It is demonstrated that the internal pressure of the soft manipulator was reduced by 13.05% at the optimal position, which effectively helped mitigate the fatigue damage of the soft manipulator and prolonged the lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.