Vehicle Platform Vibration Signal (VPVS) denoising is essential to achieve high measurement accuracy of precise optical measuring instrument (POMI). A method to denoise the VPVS is proposed based on the wavelet coefficients thresholding and threshold neural network (TNN). According to the characteristics of VPVS, a novel thresholding function is constructed, and then its optimized threshold is selected through unsupervised learning of TNN. The original VPVS mixed in trend and random noise is constructed as VPVS model. A VPVS denoising flow is proposed based on the power spectral and energy distribution of the VPVS model. The simulation shows that the proposed denoising method achieves better results, compared to the previous denoising methods using the indexes of SNR and RMSE. The experiment demonstrates that it is efficient for denoising VPVS polluted by the trend and random noise.
Microcalcification is the most important landmark information for early breast cancer. At present, morphological artificial observation is the main method for clinical diagnosis of such diseases, but it is easy to cause misdiagnosis and missed diagnosis. The present study proposes an algorithm for detecting microcalcification on mammography for early breast cancer. Firstly, the contrast characteristics of mammograms are enhanced by Contourlet transformation and morphology (CTM). Secondly, split the ROI by the improved K-means algorithm. Thirdly, calculate grayscale feature, shape feature, and Histogram of Oriented Gradient (HOG) for the ROI region. The Adaptive support vector machine (ASVM) is used as a tool to classify the rough calcification point and the false calcification point. Under the guidance of a professional doctor, 280 normal images and 120 calcification images were selected for experimentation, of which 210 normal images and 90 images with calcification images were used for training classification. The remaining 100 are used to test the algorithm. It is found that the accuracy of the automatic classification results of the Adaptive support vector machine (ASVM) algorithm reaches 94%, and the experimental results are superior to similar algorithms. The algorithm overcomes various difficulties in microcalcification detection and has great clinical application value.
In this paper, a robust shape extraction method for the medical image application was developed. The method combines object region statistical information with the level set method. The new method is based on conditional independence of the gray-level intensities in the different regions. It is posed within a Bayesian framework of maximization of a posterior probability. The energy function is minimized by the level set method. The level set implementation of the contour evolution supports topology changes for object contour. We have presented some preliminary experimental results illustrating the flavor of this technique. The experimental results show that incorporating region statistical information into the level set framework, an accurate and robust segmentation can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.