Bacterial infectious diseases, such as sepsis, can lead to impaired function in the lungs, kidneys, and other vital organs. Although established technologies have been designed for the extracorporeal removal of bacteria, a high flow velocity of the true bloodstream might result in low capture efficiency and prevent the realization of their full clinical potential. Here, we develop a dialyzer made by three-dimensional carbon foam pre-grafted with nanowires to isolate bacteria from unprocessed blood. The tip region of polycrystalline nanowires is bent readily to form three-dimensional nanoclaws when dragged by the molecular force of ligand-receptor, because of a decreasing Young’s moduli from the bottom to the tip. The bacterial capture efficiency was improved from ~10% on carbon foam and ~40% on unbendable single-crystalline nanowires/carbon foam to 97% on bendable polycrystalline nanowires/carbon foam in a fluid bloodstream of 10 cm s−1 velocity.
We study the complex dynamics of a two-dimensional suspension comprising non-motile active particles confined in an annulus. A coarse-grained liquid crystal model is employed to describe the nematic structure evolution, and is hydrodynamically coupled with the Stokes equation to solve for the induced active flows in the annulus. For dilute suspensions, coherent structures are captured by varying the particle activity and gap width, including unidirectional circulations, travelling waves and chaotic flows. For concentrated suspensions, the internal collective dynamics features motile disclination defects and flows at finite gap widths. In particular, we observe an intriguing quasi-steady-state at certain gap widths during which $+1/2$-order defects oscillate around equilibrium positions accompanying travelling-wave flows that switch circulating directions periodically. We perform linear stability analyses to reveal the underlying physical mechanisms of pattern formation during a concatenation of instabilities.
β-Lactam–resistant (BLR) Gram-negative bacteria that are difficult or impossible to treat are causing a global health threat. However, the development of effective nanoantibiotics is limited by the poor understanding of changes in the physical nature of BLR Gram-negative bacteria. Here, we systematically explored the nanomechanical properties of a range of Gram-negative bacteria (Salmonella, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae) with different degrees of β-lactam resistance. Our observations indicated that the BLR bacteria had cell stiffness values almost 10× lower than that of β-lactam–susceptible bacteria, caused by reduced peptidoglycan biosynthesis. With the aid of numerical modeling and experimental measurements, we demonstrated that these stiffness findings can be used to develop programmable, stiffness-mediated antimicrobial nanowires that mechanically penetrate the BLR bacterial cell envelope. We anticipate that these stiffness-related findings will aid in the discovery and development of novel treatment strategies for BLR Gram-negative bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.