The working performance of the spindle system is the most important factor to embody the overall performance of the machine tool. To ensure the advanced capabilities, besides the high-precision manufacturing technologies, it is mainly depending on the bearing module and the forces on the spindle. In this paper, a new strategy of the vertical spindle supporting system is presented to meet the high stiffness requirement for the aerostatic bearing. Based on the computational fluid dynamics and finite volume method, a fluid dynamic model and structure model of the large diameter incorporate radial-thrust aerostatic bearing is developed and simulated to find out the pressure distribution laws of the spindle supporting system. The grid subdivision in the direction of film thickness is paid more attentions when establishing the grid of the whole gas film. Simulation results show that this special structure of bearing module can supply enough load capacity and stiffness for the machine tool. The results also indicate that the static characteristics of the bearing are improved as the supply pressure increases and as the supply orifice diameter decreases.
Ultra-precision flying cutting machining with a vertical milling style is an important means of ultra-precision machining. It has a close relationship between the machining accuracy and the dynamic characteristics of the aerostatic spindle. The film force acting on the spindle rotor is related to the manufacture, installation and static unbalance or dynamic imbalance or other factors. Therefore, it is necessary to analyze the dynamic pressure force caused by these factors in order to study on the rotor posture and quantitative movement of the spindle. This article derived the solution formula for the dynamic pressure reaction force of the ultra-precision machine tool spindle with vertical static film based on the basic theory of the rigid body dynamics. The gyroscopic torque of the spindle has been analyzed under different conditions with the spindle dynamic balancing tests, which provide a reference to the further analysis of the spindle dynamic characteristics.
The components of spindle system are key components in ultra precision machine tool. According to the characteristics of the machining process of vertical hydrostatic spindle system for ultra-precision fly cutting machine, the mass- stiffness model of the spindle system is established. This paper describes a system for the analysis of the spindle system under the action of external shocks. The use of the state space method is discussed and an example is given. The influence law of vibration frequency is obtained for the various mass and stiffness value of the spindle system components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.