Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces.
There is a growing interest in neuroscience in assessing the continuous, endogenous, and nonstationary dynamics of brain network activity supporting the fluidity of human cognition and behavior. This non-stationarity may involve ever-changing formation and dissolution of active cortical sources and brain networks. However, unsupervised approaches to identify and model these changes in brain dynamics as continuous transitions between quasi-stable brain states using unlabeled, noninvasive recordings of brain activity have been limited. This study explores the use of adaptive mixture independent component analysis (AMICA) to model multichannel electroencephalographic (EEG) data with a set of ICA models, each of which decomposes an adaptively learned portion of the data into statistically independent sources. We first show that AMICA can segment simulated quasi-stationary EEG data and accurately identify ground-truth sources and source model transitions. Next, we demonstrate that AMICA decomposition, applied to 6-13 channel scalp recordings from the CAP Sleep Database, can characterize sleep stage dynamics, allowing 75% accuracy in identifying transitions between six sleep stages without use of EEG power spectra. Finally, applied to 30-channel data from subjects in a driving simulator, AMICA identifies models that account for EEG during faster and slower response to driving challenges, respectively. We show changes in relative probabilities of these models allow effective prediction of subject response speed and moment-by-moment characterization of state changes within single trials. AMICA thus provides a generic unsupervised approach to identifying and modeling changes in EEG dynamics. Applied to continuous, unlabeled multichannel data, AMICA may likely be used to detect and study any changes in cognitive states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.