Effects of pore structure and surface chemical characteristics of titanate nanotubes (TNTs) on their adsorptive removal of organic vapors were investigated. TNTs were prepared via a hydrothermal treatment of TiO 2 powders in a 10 M NaOH solution at 150°C for 24 h, and subsequently washed with HCl aqueous solution of different concentrations. Effects of acid washing process (or the sodium content) on the microstructures and surface chemical characteristics of TNTs were characterized with nitrogen adsorption-desorption isotherms, FTIR, and water vapor adsorption isotherms. For the adsorption experiments, gravimetric techniques were employed to determine the adsorption capacities of TNTs for four organic vapors with similar heats of vaporization (i.e., comparable heats of adsorption) but varying dipole moments and structures, including n-hexane, cyclohexane, toluene, and methyl ethyl ketone (MEK), at isothermal conditions of 20 and 25°C. The experimental data were correlated by well-known vapor phase models including BET and GAB models. Isosteric heats of adsorption were calculated and heat curves were established. Equilibrium isotherms of organic vapors on TNTs were type II, characterizing vapor condensation to form multilayers. The specific surface area (and pore volume) and hydrophilicity of TNTs were the dominating factors for the determination of their organic vapors adsorption capacity. The GAB isotherm equation fitted the experimental data more closely than the BET equation. The heats of adsorption showed that the adsorption of organic vapors on TNTs was primarily due to physical forces and adsorbates with larger polarity might induce a stronger interaction with TNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.