The effect of surface plasmon resonance (SPR) on the blinking emission of photoluminescence from noble metal nanostructures still requires further investigation in quantum mechanics and limits their applications. We investigate one photon luminescent emission intermittency of noble metal nanostructures with differently sized sea-urchin-shaped nanoparticles, known as nano-sea-urchins (NSUs). The probability of the "on" process in one photon luminescent emission intermittency of NSUs increases due to the strong electric field of SPR. This mechanism is explained by the reaction potential threshold model we propose here. Furthermore, the ameliorated photoluminescence of NSUs is strong enough to excite waterweed bioluminescence and can act as an in vivo bio-light emitting device, which has potential applications in cytotoxicity, bio-imaging and bio-labeling.
Recently, aromatic molecules have been stacked on graphene for applications in biosensors and chemical sensors, although the interaction between them is not well understood. In this paper, we use electrostatic model, double charge rings, and its image charges model to simulate the π–π interaction between benzene and a graphene layer. Furthermore, the results of our model are confirmed by the numerical results from density functional theory and experimental reviews. This model has potential for use in predicting the interactions between aromatic molecules and graphene.
Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.
Natural pigment can act as an inexpensive and biologically-friendly dye, which is fabricated on a TiO2/FTO substrate. Natural pigments promote the efficiency of the photoelectric conversion in water-based DSSC with the aqueous electrolyte of the Ce+4/+3 system. The open-circuit voltage (Voc) of natural pigment in water-based DSSC is 0.640 V. The short-circuit current (Isc) of natural pigment in water-based DSSC is 0.658 mA/cm2. The efficiency of the photoelectric conversion in water-based DSSC of natural pigment is up to 0.131%. The natural pigments in DSSC are potentially applicable to turning solar energy into environmentally-friendly energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.