Natural xanthones have diversity pharmacological activities. Here, a series of xanthones isolated from the pericarps of Garcinia mangostana Linn, named α-Mangostin, 8-Deoxygartanin, Gartanin, Garciniafuran, Garcinone C, Garcinone D, and γ-Mangostin were investigated. Biological screening performed in vitro and in Escherichia coli cells indicated that most of the xanthones exhibited significant inhibition of self-induced β-amyloid (Aβ) aggregation and also β-site amyloid precursor protein-cleaving enzyme 1, acted as potential antioxidants and biometal chelators. Among these compounds, α-Mangostin, Gartanin, Garcinone C and γ-Mangostin showed better antioxidant properties to scavenge Diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) free radical than Trolox, and potent neuroprotective effects against glutamate-induced HT22 cell death partly by up-regulating HO-1 protein level and then scavenging reactive oxygen species. Moreover, Gartanin, Garcinone C and γ-Mangostin could be able to penetrate the blood-brain barrier (BBB) in vitro. These findings suggest that the natural xanthones have multifunctional activities against Alzheimer's disease (AD) and could be promising compounds for the therapy of AD.
Oxidative stress mediates the pathogenesis of neurodegenerative disorders. Gartanin, a natural xanthone of mangosteen, possesses multipharmacological activities. Herein, the neuroprotection capacity of gartanin against glutamate-induced damage in HT22 cells and its possible mechanism(s) were investigated for the first time. Glutamate resulted in cell death in a dose-dependent manner and supplementation of 1-10 µM gartanin prevented the detrimental effects of glutamate on cell survival. Additional investigations on the underlying mechanisms suggested that gartanin could effectively reduce glutamate-induced intracellular ROS generation and mitochondrial depolarization. We further found that gartanin induced HO-1 expression independent of nuclear factor erythroid-derived 2-like 2 (Nrf2). Subsequent studies revealed that the inhibitory effects of gartanin on glutamate-induced apoptosis were partially blocked by small interfering RNA-mediated knockdown of HO-1. Finally, the protein expression of phosphorylation of AMP-activated protein kinase (AMPK) and its downstream signal molecules, Sirtuin activator (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), increased after gartanin treatment. Taken together, these findings suggest gartanin is a potential neuroprotective agent against glutamate-induced oxidative injury partially through increasing Nrf-2-independed HO-1 and AMPK/SIRT1/PGC-1α signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.