1 The ambrosia beetle morphologically identified as Euwallacea fornicatus consists of several cryptic species that exhibit large differences in the DNA sequences of several nuclear and mitochondrial gene regions. 2 Based on these differences, we suggest that there are at least three different species each with distinct phylogeography. 3 Members of this cryptic species complex have invaded many areas outside their native range and cause substantial damage to both agriculture (avocado in particular) and other tree species. 4 Three of these cryptic species have invaded the USA: two species in California and a third species in both Florida and Hawaii. 5 Identification of their native range allows directed search for their natural enemies that may be used in biological control of these tree pests.
The laurel wilt pathogen Raffaelea lauricola was hypothesized to have been introduced to the southeastern USA in the mycangium of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia. To test this hypothesis adult X. glabratus were trapped in Taiwan and on Kyushu Island, Japan, in 2009, and dead beetles were sent to USA for isolation of fungal symbionts. Individual X. glabratus were macerated in glass tissue grinders, and the slurry was serially diluted and plated onto malt agar medium amended with cycloheximide, a medium semiselective for Ophiostoma species and their anamorphs, including members of Raffaelea. R. lauricola was isolated from 56 of 85 beetles in Taiwan and 10 of 16 beetles in Japan at up to an estimated 10 000 CFUs per beetle. The next most commonly isolated species was R. ellipticospora, which also has been recovered from X. glabratus trapped in the USA, as were two other fungi isolated from beetles in Taiwan, R. fusca and R. subfusca. Three unidentified Raffaelea spp. and three unidentified Ophiostoma spp. were isolated rarely from X. glabratus collected in Taiwan. Isolations from beetles similarly trapped in Georgia, USA, yielded R. lauricola and R. ellipticospora in numbers similar to those from beetles trapped in Taiwan and Japan. The results support the hypothesis that R. lauricola was introduced into the USA in mycangia of X. glabratus shipped to USA in solid wood packing material from Asia. However differences in the mycangial mycoflora of X. glabratus in Taiwan, Japan and USA suggest that the X. glabratus population established in USA originated in another part of Asia.
Laurel wilt is a vascular wilt disease caused by Raffaelea lauricola, a mycangial symbiont of an ambrosia beetle, Xyleborus glabratus. The fungus and vector are native to Asia but were apparently introduced to the Savannah, GA, area 15 or more years ago. Laurel wilt has caused widespread mortality on redbay (Persea borbonia) and other members of the Lauraceae in the southeastern United States, and the pathogen and vector have spread as far as Texas. Although believed to be a single introduction, there has been no extensive study on genetic variation of R. lauricola populations that would suggest a genetic bottleneck in the United States. Ten isolates of R. lauricola from Japan, 55 from Taiwan, and 125 from the United States were analyzed with microsatellite and 28S rDNA markers, and with primers developed for two mating-type genes. The new primers identified isolates as either MAT1 or MAT2 mating types in roughly equal proportions in Taiwan and Japan, where there was also high genetic diversity within populations based on all the markers, suggesting that these populations may have cryptic sex. Aside from a local population near Savannah and a single isolate in Alabama that had unique microsatellite alleles, the U.S. population was genetically uniform and included only the MAT2 mating type, supporting the single introduction hypothesis. This study suggests the importance of preventing a second introduction of R. lauricola to the United States, which could introduce the opposite mating type and allow for genetic recombination.
Abstract. The International Long Term Ecological Research (ILTER) Network was established in 1993and is now composed of thirty-eight national networks representing a diversity of ecosystems around the globe. Data generated by the ILTER Network are valuable for scientists addressing broad spatial and temporal scale research questions, but only if these data can be easily discovered, accessed, and understood. Challenges to publishing ILTER data have included unequal distribution among networks of information management expertise, user-friendly tools, and resources. Language and translation have also been issues. Despite these significant obstacles, ILTER information managers have formed grassroots partnerships and collaborated to provide information management training, adopt a common metadata standard, develop information management tools useful throughout the network, and organize scientist/ information manager workshops that encourage scientists to share and integrate data. Throughout this article, we share lessons learned from the successes of these grassroots international partnerships to inform others who wish to collaborate internationally on projects that depend on data sharing entailing similar management challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.