Innate immunity plays a crucial role in the response to sterile inflammation such as liver ischemia/reperfusion (I/R) injury. The initiation of liver I/R injury results in the release of damage associated molecular patterns (DAMPs), which trigger innate immune and inflammatory cascade via pattern recognition receptors. Neutrophils are recruited to the liver after I/R and contribute to the organ damage, innate immune and inflammatory responses. Formation of neutrophil extracellular trap (NET) has been recently found in response to various stimuli. However, the role of NETs during liver I/R injury remains unknown. We show that NETs form in the sinusoids of ischemic liver lobes in vivo. This was associated with increased NET markers, serum level of myeloperoxidase (MPO)-DNA complexes and tissue level of citrullinated-histone H3 compared to control mice. Treatment with peptidyl-arginine-deiminase (PAD) 4 inhibitor or DNase I significantly protected hepatocytes and reduced inflammation after liver I/R as evidenced by inhibition of NET formation, indicating the pathophysiological role of NETs in liver I/R injury. In vitro, NETs increase hepatocyte death and induce Kupffer cells to release proinflammatory cytokines. DAMPs, such as HMGB1 and histones, released by injured hepatocytes stimulate NET formation through Toll-like receptor (TLR4)- and TLR9-MyD88 signaling pathways. After neutrophil depletion in mice, the adoptive transfer of TLR4 knockout (KO) or TLR9 KO neutrophils confers significant protection from liver I/R injury with significant decrease in NET formation. In addition, we found inhibition of NET formation by PAD4 inhibitor or DNase I reduces HMGB1 and histone-mediated liver I/R injury. Conclusion DAMPs released during liver I/R promotes NET formation through TLRs signaling pathway. Development of NETs subsequently exacerbates organ damage and initiates inflammatory responses during liver I/R.
BACKGROUND The majority of the prostatic cancers are adenocarcinomas characterized by glandular formation and the expression of luminal differentiation markers androgen receptor (AR) and prostate-specific antigen (PSA). Most adenocarcinomas are indolent and androgen-dependent. Hormonal therapy that inhibits AR signaling produces symptomatic relief in patients with advanced and metastatic adenocarcinomas. Prostatic small cell neuroendocrine carcinoma (SCNC) is a variant form of prostate cancer (PC). In contrast to adenocarcinoma, the tumor cells of SCNC do not form glands and are negative for AR and PSA. SCNC is extremely aggressive and does not respond to hormonal therapy. The purpose of this study was to compare the important and relevant features of two most commonly used PC cell lines, LNCaP and PC3, with prostatic adenocarcinoma and SCNC. METHODS Xenograft tumors of LNCaP and PC3 were prepared and compared with human prostatic adenocarcinoma and SCNC for the expression of key signaling molecules by immunohistochemistry and Western blot analysis. RESULTS LNCaP cells express AR and PSA and their growth is inhibited by androgen withdrawal, similar to human prostatic adenocarcinoma. PC3 cells do not express AR and PSA and their proliferation is independent of androgen, similar to SCNC. Adenocarcinoma cells and LNCaP cells are negative for neuroendocrine markers and stem cell-associated marker CD44 while SCNC and PC3 cells are positive. LNCaP cells have identical cytokeratin profiles to adenocarcinoma while PC3 cells have cytokeratin profiles similar to SCNC. CONCLUSION LNCaP cells share common features with adenocarcinoma while PC3 cells are characteristic of SCNC.
The clinical diagnosis of BBF can be established by sputum analysis. Careful assessment of this condition is needed before therapeutic procedure. Invasive approaches should be considered only when non-invasive methods failed.
BackgroundChemicals of herbal products may cause unexpected toxicity or adverse effect by the potential for alteration of the activity of CYP450 when co-administered with other drugs. Eleutherococcus senticosus (ES), has been widely used as a traditional herbal medicine and popular herbal dietary supplements, and often co-administered with many other drugs. The main bioactive constituents of ES were considered to be eleutherosides including eleutheroside B (EB) and eleutheroside E (EE). This study was to investigate the effects of EB and EE on CYP2C9, CYP2D6, CYP2E1 and CYP3A4 in rat liver microsomes in vitro.MethodProbe drugs of tolbutamide (TB), dextromethorphan (DM), chlorzoxazone (CLZ) and testosterone (TS) as well as eleutherosides of different concentrations were added to incubation systems of rat liver microsomes in vitro. After incubation, validated HPLC methods were used to quantify relevant metabolites.ResultsThe results suggested that EB and EE exhibited weak inhibition against the activity of CYP2C9 and CYP2E1, but no effects on CYP2D6 and CYP3A4 activity. The IC50 values for EB and EE were calculated to be 193.20 μM and 188.36 μM for CYP2E1, 595.66 μM and 261.82 μM for CYP2C9, respectively. Kinetic analysis showed that inhibitions of CYP2E1 by EB and EE were best fit to mixed-type with Ki value of 183.95 μM and 171.63 μM, respectively.ConclusionsThese results indicate that EB and EE may inhibit the metabolism of drugs metabolized via CYP2C9 and CYP2E1, and have the potential to increase the toxicity of the drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.