Bone metastasis is a common complication of many types of advanced cancer, including breast cancer. Bone metastasis may cause severe pain, fractures, and hypercalcemia, rendering clinical management challenging and substantially reducing the quality of life and overall survival (OS) time of breast cancer patients. Studies have revealed that bone metastasis is related to interactions between tumor cells and the bone microenvironment, and involves complex molecular biological mechanisms, including colonization, osteolytic destruction, and an immunosuppressive bone microenvironment. Agents inhibiting bone metastasis (such as bisphosphate and denosumab) alleviate bone destruction and improve the quality of life of breast cancer patients with bone metastasis. However, the prognosis of these patients remains poor, and the specific biological mechanism of bone metastasis is incompletely understood. Additional basic and clinical studies are urgently needed, to further explore the mechanism of bone metastasis and develop new therapeutic drugs. This review presents a summary of the molecular mechanisms and therapeutic strategies of bone metastasis of breast cancer, aiming to improve the quality of life and prognosis of breast cancer patients and provide a reference for future research directions.
Background: The number of patients with breast cancer is increasing worldwide, resulting in a growing number of patients with chemotherapy-related cognitive impairment (CRCI), which seriously affects their quality of life. CRCI is associated with inflammatory factors and systemic inflammatory markers such as pan-immune-inflammation value (PIV) and monocyte-to-lymphocyte ratio (MLR), which can reflect the level of inflammation in the body. While the Managing Cancer and Living Meaningfully (CALM) intervention has been demonstrated to alleviate CRCI in patients with breast cancer, the specific mechanism remains unclear. Objective: This study evaluated the impact of the CALM intervention on systemic inflammation. Methods: Ninety patients with breast cancer with CRCI were enrolled and randomized into care as usual (CAU) and CALM intervention groups. All patients were assessed using the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog), Mini-Mental State Exam (MMSE), and Functional Assessment of Cancer Therapy-Breast (FACT-B) before and after the CAU/CALM intervention. The blood levels of inflammatory markers were also analyzed before and after the intervention. Results: Compared to the CAU group, the CALM group showed significantly improved cognitive function and significantly decreased PIV ( P < .05). PIV was significantly negatively correlated with FACT-Cog ( P < .05). The levels of other inflammatory markers, including MLR, neutrophil-to-lymphocyte ratio (NLR), granulocyte-to-lymphocyte ratio (GLR), and systemic immune-inflammation index (SII), were also reduced in the CALM group. Conclusion: PIV is an important marker of inflammation. The CALM intervention may improve the cognitive function of patients by regulating the systemic inflammation marker PIV through the neuroimmune axis.
Background Camellia oleifera (C.oleifera) is one of the most important wood oil species in the world. C.oleifera was propagated by nurse seedling grafting. Since the morphology of rootstocks has a significant impact on grafting efficiency and seedling quality, it is necessary to understand the molecular mechanism of morphogenesis for cultivating high-quality and controllable rootstocks. However, the genomic resource for this species is relatively limited, which hinders us from fully understanding the molecular mechanisms of seed germination in C.oleifera. Results In this paper, using transcriptome sequencing, we measured the gene expression in the C.oleifera cotyledon in different stages of development and the global gene expression profiles. Approximately 45.4 gigabases (GB) of paired-end clean reads were assembled into 113,582 unigenes with an average length of 396 bp. Six public protein databases annotate 61.5% (68,217) of unigenes. We identified 11,391 differentially expressed genes (DEGs) throughout different stages of germination. Enrichment analysis revealed that DEGs were mainly involved in hormone signal transduction and starch sucrose metabolism pathways. The gravitropism regulator UNE10, the meristem regulators STM, KNAT1, PLT2, and root-specific transcription factor WOX11 all have higher gene expression levels in the CAM2 stage (seed soaking), which indicates that the cotyledon-regulated program for germination had initiated when the seeds were imbibition. Our data showed differentially reprogrammed to multiple hormone-related genes in cotyledons during C.oleifera seed germination. Conclusion Cotyledons play vital roles, both as the main nutrient provider and as one primary instructor for seed germination and seedling growth. Together, our study will significantly enrich the genomic resources of Camellia and help us understand the molecular mechanisms of the development in the seed germination and seedling growth of C.oleifera. It is helpful to culture standard and superior quality rootstock for C.oleifera breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.