Type 1 diabetes mellitus (T1DM) is an autoimmune disease that attacks pancreatic β-cells, leading to the destruction of insulitis-related islet β-cells. Islet β-cell transplantation has been proven as a curative measure in T1DM. However, a logarithmic increase in the global population with diabetes, limited donor supply, and the need for lifelong immunosuppression restrict the widespread use of β-cell transplantation. Numerous therapeutic approaches have been taken to search for substitutes of β-cells, among which stem cell transplantation is one of the most promising alternatives. Stem cells have demonstrated the potential efficacy to treat T1DM by reconstitution of immunotolerance and preservation of islet β-cell function in recent research. cGMP-grade stem cell products have been used in human clinical trials, showing that stem cell transplantation has beneficial effects on T1DM, with no obvious adverse reactions. To better achieve remission of T1DM by stem cell transplantation, in this work, we explain the progression of stem cell transplantation such as mesenchymal stem cells (MSCs), human embryonic stem cells (hESCs), and bone marrow hematopoietic stem cells (BM-HSCs) to restore the immunotolerance and preserve the islet β-cell function of T1DM in recent years. This review article provides evidence of the clinical applications of stem cell therapy in the treatment of T1DM.
BackgroundBiochemical processes involved in complex skin diseases (skin cancers, psoriasis, and wound) can be identified by combining proteomics analysis and bioinformatics tools, which gain a next-level insight into their pathogenesis, diagnosis, and therapeutic targets.MethodsArticles were identified through a search of PubMed, Embase, and MEDLINE references dated to May 2022, to perform system data mining, and a search of the Web of Science (WoS) Core Collection was utilized to conduct a visual bibliometric analysis.ResultsAn increased trend line revealed that the number of publications related to proteomics utilized in skin diseases has sharply increased recent years, reaching a peak in 2021. The hottest fields focused on are skin cancer (melanoma), inflammation skin disorder (psoriasis), and skin wounds. After deduplication and title, abstract, and full-text screening, a total of 486 of the 7,822 outcomes met the inclusion/exclusion criteria for detailed data mining in the field of skin disease tooling with proteomics, with regard to skin cancer. According to the data, cell death, metabolism, skeleton, immune, and inflammation enrichment pathways are likely the major part and hotspots of proteomic analysis found in skin diseases. Also, the focuses of proteomics in skin disease are from superficial presumption to depth mechanism exploration within more comprehensive validation, from basic study to a combination or guideline for clinical applications. Furthermore, we chose skin cancer as a typical example, compared with other skin disorders. In addition to finding key pathogenic proteins and differences between diseases, proteomic analysis is also used for therapeutic evaluation or can further obtain in-depth mechanisms in the field of skin diseases.ConclusionProteomics has been regarded as an irreplaceable technology in the study of pathophysiological mechanism and/or therapeutic targets of skin diseases, which could provide candidate key proteins for the insight into the biological information after gene transcription. However, depth pathogenesis and potential clinical applications need further studies with stronger evidence within a wider range of skin diseases.
Rosacea is a complex chronic inflammatory skin disorder with high morbidity. Pyroptosis is known as a regulated inflammatory cell death. While its association with immune response to various inflammatory disorders is well established, little is known about its functional relevance of rosacea. So, we aimed to explore and enrich the pathogenesis involved in pyroptosis‐related rosacea aggravations. In this study, we evaluated the pyroptosis‐related patterns of rosacea by consensus clustering analysis of 45 ferroptosis‐related genes (FRGs), with multiple immune cell infiltration analysis to identify the pyroptosis‐mediated immune response in rosacea using GSE65914 dataset. The co–co‐work between PRGs and WGCNA‐revealed hub genes has established using PPI network. FRG signature was highlighted in rosacea using multi‐transcriptomic and experiment analysis. Based on this, three distinct pyroptosis‐related rosacea patterns (non/moderate/high) were identified, and the notably enriched pathways have revealed through GO, KEGG and GSEA analysis, especially immune‐related pathways. Also, the XCell/MCPcount/ssGSEA/Cibersort underlined the immune‐related signalling (NK cells, Monocyte, Neutrophil, Th2 cells, Macrophage), whose hub genes were identified through WGCNA (NOD2, MYD88, STAT1, HSPA4, CXCL8). Finally, we established a pyroptosis‐immune co‐work during the rosacea aggravations. FRGs may affect the progression of rosacea by regulating the immune cell infiltrations. In all, pyroptosis with its mediated immune cell infiltration is a critical factor during the development of rosacea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.