Thin silver films with different thicknesses are deposited by thermal evaporation, and the Drude-Lorentz mode is used to describe the optical properties of samples measured by an ellipsometer, and the thickness uniqueness analysis and reflection spectrum testing are used to verify the simulated results. We obtain the surface morphologies of the samples using the scanning electron microscopy, and calculate the relationship of reflectance with film thickness at wavelength 800 nm using the Mathcad software. Moreover, the effective medium approximation mode is used to explain the differences of wavelength-dependent 𝑛 and 𝑘 as the thickness changes. As the silver film thickness decreases, the optical constant changes regularly, and the films show flat surface, small cracks, discontinuous and island distribution, respectively, while 𝑛 and 𝑘 of the island distributed silver film have an intersection point in the visible spectrum. Our experiments provide an in-depth research for the ultra-thin silver film under thermal evaporation deposition, and will be helpful for its application in multilayers and plasmonic devices.
The infrared dielectric property of monoclinic BaTeMo2O9 single crystals is studied by polarized IR reflectance spectra from 20 to 1800 cm−1. Based on the modified Lorentz model, the frequencies, strengths, and dampings of TO modes as well as the orientations of the dipole momenta are determined, agreeing well with Raman spectra and results from First-principles calculation. The observed modes are visually assigned to the specific atoms' motions in the primitive cell based on the theory calculations. A large shift of the internal modes of the anion groups relative to free anion co-ordination polyhedra is observed, which can be used to indicate the distortions of co-ordination polyhedra related to the nonlinear optical properties. Further, the experimental results of the strengths of the oscillators support the elimination and splitting of degenerate modes in free regular polyhedrons. These results offer a way to evaluate the nonlinear optical properties by use of traditional IR reflectivity spectra.
In recent years, broadband absorbers in the long-wave infrared (LWIR) spectrum have shown great scientific value and advantages in some areas, such as thermal imaging and radiation modulation. However, designing a broadband absorber with an ultra-high absorption rate has always been a challenge. In this paper, we design a near perfect absorber that is highly tunable, angle insensitive, and has polarization independence for LWIR. By using multi-mode localized surface plasmon resonance (LSPR) of a surface metal structure, the absorber achieves a very high absorption average of 99.7% in wavelengths from 9.7 μm to 12.0 μm. For incident light, the meta-structure absorber exhibits excellent polarization independence. When the incident angle increases from 0° up to 60°, the absorption rate maintains over 85%. By modulating the size of the structure, the meta-structure absorber can also achieve a high absorption rate of 95.6%, covering the entire LWIR band (8–14 μm in wavelength). This meta-structure absorber has application prospects in infrared detecting, infrared camouflage, radiation cooling, and other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.