Luteolin is a representative of natural flavonoid that has anti-tumour properties. This study designed to check its impact on breast cancer and the underlying mechanisms. MDA-MB-453 and MCF-7 cells were administrated with luteolin and the following techniques were carried out: CCK-8 assay, FITC-PI doublestaining and Western blot. qRT-PCR analysis was utilized to see the effects of luteolin on miR-203 expression. Besides, miR-203 expression was silenced by transfection with specific inhibitor. Luteolin remarkably declined MDA-MB-453 and MCF-7 cells viability and accelerated apoptosis which accompanied by Bax up-regulation, Bcl-2 down-regulation and Caspase-3 cleavage. Also, luteolin impeded TGFb1-induced EMT, as evidenced by the decreased levels of Vimentin, Zeb1 and N-cadherin, as well as the increased level of E-cadherin. miR-203 was highly expressed in 22 pair of breast cancer tissues than the matched paracancerous tissues. Luteolin could elevate miR-203 level. Besides, luteolin's antitumour effects were partially eliminated by miR-203 silence. Further, luteolin inhibited Ras/Raf/MEK/ERK signalling, while the inhibitory effects were flattened by miR-203 silence. Luteolin significantly reduced breast cancer cells growth and EMT. Luteolin exerted its anti-tumour effects possibly involved the elevated expression of miR-203 and the inhibited Ras/Raf/MEK/ERK signalling.
This study determined the chemosensitizing potential of ginsenoside Rg1 in triplenegative MDA-MB-231 breast cancer cell lines. Ginsenoside Rg1 (10 µM) treated breast cancer cells were exposed to 8 nM of doxorubicin, and the chemosensitizing potential was measured by cell-based assays. Ginsenoside Rg1 (10 µM) treatment lowered the doxorubicin IC 50 value to 0.01 nM. Furthermore, the ginsenoside pretreatment augments doxorubicin-mediated reactive oxygen species (ROS) generation and subsequent alterations of mitochondrial membrane potential in MDA-MB-231 cell lines. The alkaline comet assay results illustrated an increased % tail DNA during ginsenoside Rg1 plus doxorubicin treatment than doxorubicin alone treatment. In addition, the number of apoptotic cells was also increased in ginsenoside Rg1 plus doxorubicin-treated cells. Furthermore, the polymerase chain reaction array results illustrate activation of mitogen-activated protein kinase (MAPK) gene expression (AKT, ERK, and MAPK) during doxorubicin alone treatment and it has been attenuated by ginsenoside Rg1 pretreatment. Moreover, ginsenoside Rg1 treatment before doxorubicin activates the DNA damage response elements (ATM, H2AX, RAD51, and XRCC1) and subsequent apoptosis-related gene expression (p21, TP53. APAF1, Bax, CASP3, and CASP9) patterns in MDA-MB-231 cell lines. The ginsenoside Rg1 plus doxorubicin combination shows less cytotoxicity and ROS generation in MDA10A normal breast cancer cell lines. Therefore, the present results support the chemosensitizing property of ginsenoside Rg1 in triple-negative breast cancer cell lines.
This study aimed to explore the application of super paramagnetic gold magnetic nanoparticles (Au-M-NPs) in the magnetic resonance imaging (MRI) images for targeted diagnosis and treatment of breast cancer. The reducibility of ethylene glycol to ferric chloride (FeCl3) was adopted to synthesize the Au-M-NPs by solvothermal method by taking acetic acid as the base source and trisodium citrate as the stabilizer. Besides, the synthesized Au-M-NPs were applied in the MRI images for targeted therapy of breast cancer. Patients from a blank group (group A), a control group (group B), and an experimental group (group C) received the traditional clinical diagnosis treatment, MRI diagnosis, and Au-M-NPs targeted therapy with MRI in turn. The results showed that the prepared Au-M-NPs were featured with small particle size and good dispersibility, and were monodispersive after surface modification. The intraoperative blood loss of patients from group A (115.3±9.33 mL) and group B (94.6±9.72 mL) was obviously higher than the loss of group C (68.4±8.7 mL) (P < 0.05). The drainage volume of patients from group B (162.4±12.3 mL) and group C (131.9±11.8 mL) decreased sharply after surgery compared with group A (193.7±11.8 mL), and that in group C was the lowest (P < 0.05). The proportion of local recurrence in patients from group B (12.3%) and group C (6.4%) dropped steeply in contrast to the proportion of group A (13.2%) (P < 0.05). The proportion of tumor metastasis in patients from group B (11.2%) and group C (8.4%) was greatly lower than that of group A (14.8%) (P < 0.05). In conclusion, the application of Au-M-NPs in the diagnosis and treatment of breast cancer with MRI could effectively reduce the incidence of intraoperative and postoperative adverse reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.