The basal ganglia (BG), serving as an intermediate bridge between the cerebral cortex and thalamus, are believed to play crucial roles in controlling absence seizure activities generated by the pathological corticothalamic system. Inspired by recent experiments, here we systematically investigate the contribution of a novel identified GABAergic pallido-cortical pathway, projecting from the globus pallidus externa (GPe) in the BG to the cerebral cortex, to the control of absence seizures. By computational modelling, we find that both increasing the activation of GPe neurons and enhancing the coupling strength of the inhibitory pallido-cortical pathway can suppress the bilaterally synchronous 2–4 Hz spike and wave discharges (SWDs) during absence seizures. Appropriate tuning of several GPe-related pathways may also trigger the SWD suppression, through modulating the activation level of GPe neurons. Furthermore, we show that the previously discovered bidirectional control of absence seizures due to the competition between other two BG output pathways also exists in our established model. Importantly, such bidirectional control is shaped by the coupling strength of this direct GABAergic pallido-cortical pathway. Our work suggests that the novel identified pallido-cortical pathway has a functional role in controlling absence seizures and the presented results might provide testable hypotheses for future experimental studies.
The importance of self-feedback autaptic transmission in modulating spike-time irregularity is still poorly understood. By using a biophysical model that incorporates autaptic coupling, we here show that self-innervation of neurons participates in the modulation of irregular neuronal firing, primarily by regulating the occurrence frequency of burst firing. In particular, we find that both excitatory and electrical autapses increase the occurrence of burst firing, thus reducing neuronal firing regularity. In contrast, inhibitory autapses suppress burst firing and therefore tend to improve the regularity of neuronal firing. Importantly, we show that these findings are independent of the firing properties of individual neurons, and as such can be observed for neurons operating in different modes. Our results provide an insightful mechanistic understanding of how different types of autapses shape irregular firing at the single-neuron level, and they highlight the functional importance of autaptic self-innervation in taming and modulating neurodynamics.
Fast-spiking (FS) interneurons in the brain are self-innervated by powerful inhibitory GABAergic autaptic connections. By computational modelling, we investigate how autaptic inhibition regulates the firing response of such interneurons. Our results indicate that autaptic inhibition both boosts the current threshold for action potential generation as well as modulates the input-output gain of FS interneurons. The autaptic transmission delay is identified as a key parameter that controls the firing patterns and determines multistability regions of FS interneurons. Furthermore, we observe that neuronal noise influences the firing regulation of FS interneurons by autaptic inhibition and extends their dynamic range for encoding inputs. Importantly, autaptic inhibition modulates noise-induced irregular firing of FS interneurons, such that coherent firing appears at an optimal autaptic inhibition level. Our result reveal the functional roles of autaptic inhibition in taming the firing dynamics of FS interneurons.
Our mysterious brain is believed to operate near a non-equilibrium point and generate critical self-organized avalanches in neuronal activity. Recent experimental evidence has revealed significant heterogeneity in both synaptic input and output connectivity, but whether the structural heterogeneity participates in the regulation of neuronal avalanches remains poorly understood.By computational modelling, we predict that different types of structural heterogeneity contribute distinct effects on avalanche neurodynamics. In particular, neuronal avalanches can be triggered at an intermediate level of input heterogeneity, but heterogeneous output connectivity cannot evoke avalanche dynamics. In the criticality region, the co-emergence of multi-scale cortical activities is observed, and both the avalanche dynamics and neuronal oscillations are modulated by the input heterogeneity. Remarkably, we show similar results can be reproduced in networks with various types of in-and out-degree distributions. Overall, these findings not only provide details on the underlying circuitry mechanisms of nonrandom synaptic connectivity in the regulation of neuronal avalanches, but also inspire testable hypotheses for future experimental studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.