In this work, we show the strong resistance of zwitterionic phosphorylcholine (PC) self-assembled monolayers (SAMs) to protein adsorption and examine key factors leading to their nonfouling behavior using both experimental and molecular simulation techniques. Zwitterions with a balanced charge and minimized dipole are excellent candidates as nonfouling materials due to their strong hydration capacity via electrostatic interactions.
This study examined six different polymer and self-assembled monolayer (SAM) surface modifications for their interactions with human serum and plasma. It was demonstrated that zwitterionic polymer surfaces are viable alternatives to more traditional surfaces based on poly(ethylene glycol) (PEG) as nonfouling surfaces. All polymer surfaces were formed using atom transfer radical polymerization (ATRP) and they showed an increased resistance to nonspecific protein adsorption compared to SAMs. This improvement is due to an increase in the surface packing density of nonfouling groups on the surface, as well as a steric repulsion from the flexible polymer brush surfaces. The zwitterionic polymer surface based on carboxybetaine methacrylate (CBMA) also incorporates functional groups for protein immobilization in the nonfouling background, making it a strong candidate for many applications such as in diagnostics and drug delivery.
This work describes the superlow fouling properties of glass slides grafted with zwitterionic polymers to highly resist the adsorption of proteins and the adhesion of mammalian cells. Glass slides were first silanized using 2-bromo-2-methyl-N-3-[(triethoxysilyl)propyl]propanamide (BrTMOS). Two zwitterionic polymers, poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA), were then grafted from the silanized glass substrates using the atom-transfer radical polymerization (ATRP) method. X-ray photoelectron spectroscopy (XPS) was used to analyze the surfaces of the silanized glass substrates and the substrates grafted with the polymers. An enzyme-linked immonosobrbent assay (ELISA) using polyclonal antibodies was used to measure fibrinogen adsorption on these surfaces. The surfaces with polySBMA or polyCBMA layers were shown to reduce fibrinogen adsorption to a level comparable with that of adsorption on poly(ethylene glycol)-like films. Bovine aortic endothelial cells (BAECs) were seeded on these surfaces. The attachment and spreading of the cells were observed only on unpolymerized glass surfaces. This work further demonstrates that zwitterionic polymers highly resist nonspecific protein adsorption and cell adhesion and provides an effective method to modify glass slides or other oxide surfaces to achieve superlow fouling.
In this work, we report a study of long-chain zwitterionic poly(sulfobetaine methacrylate) (pSBMA) surfaces grafted via atom transfer radical polymerization (ATRP) for their resistance to bacterial adhesion and biofilm formation. Previously, we demonstrated that p(SBMA) is highly resistant to nonspecific protein adsorption. Poly(oligo(ethylene glycol) methyl ether methacrylate) (pOEGMA) grafted surfaces were also studied for comparison. Furthermore, we quantify how surface grafting methods will affect the long-term biological performance of the surface coatings. Thus, self-assembled monolayers (SAMs) of alkanethiols with shorter-chain oligo(ethylene glycol) (OEG) and mixed SO 3 − /N + (CH 3 ) 3 terminated groups were prepared on gold surfaces. The short-term adhesion (3 h) and the long-term accumulation (24 h or 48 h) of two bacterial species (Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa) on these surfaces were studied using a laminar flow chamber. Methyl (CH 3 ) SAM on gold and a bare glass were chosen as references. p(SBMA) reduced short-term adhesion of S. epidermidis and P. aeruginosa relative to glass by 92% and 96%, respectively. For long-term biofilm formation, qualitative images showed that p(SBMA) dramatically reduced biofilm formation of S. epidermidis and P. aeruginosa as compared to glass.
The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.