BackgroundA well-established connection exists between increased gait variability and greater fall likelihood in Parkinson’s disease (PD); however, a portable, validated means of quantifying gait variability (and testing the efficacy of any intervention) remains lacking. Furthermore, although rhythmic auditory cueing continues to receive attention as a promising gait therapy for PD, its widespread delivery remains bottlenecked. The present paper describes a smartphone-based mobile application (“SmartMOVE”) to address both needs.MethodsThe accuracy of smartphone-based gait analysis (utilizing the smartphone’s built-in tri-axial accelerometer and gyroscope to calculate successive step times and step lengths) was validated against two heel contact–based measurement devices: heel-mounted footswitch sensors (to capture step times) and an instrumented pressure sensor mat (to capture step lengths). 12 PD patients and 12 age-matched healthy controls walked along a 26-m path during self-paced and metronome-cued conditions, with all three devices recording simultaneously.ResultsFour outcome measures of gait and gait variability were calculated. Mixed-factorial analysis of variance revealed several instances in which between-group differences (e.g., increased gait variability in PD patients relative to healthy controls) yielded medium-to-large effect sizes (eta-squared values), and cueing-mediated changes (e.g., decreased gait variability when PD patients walked with auditory cues) yielded small-to-medium effect sizes—while at the same time, device-related measurement error yielded small-to-negligible effect sizes.ConclusionThese findings highlight specific opportunities for smartphone-based gait analysis to serve as an alternative to conventional gait analysis methods (e.g., footswitch systems or sensor-embedded walkways), particularly when those methods are cost-prohibitive, cumbersome, or inconvenient.
Scene text recognition (STR) is a challenging task that requires large-scale annotated data for training. However, collecting and labeling real text images is expensive and timeconsuming, which limits the availability of real data. Therefore, most existing STR methods resort to synthetic data, which may introduce domain discrepancy and degrade the performance of STR models. To alleviate this problem, recent semi-supervised STR methods exploit unlabeled real data by enforcing characterlevel consistency regularization between weakly and strongly augmented views of the same image. However, these methods neglect word-level consistency, which is crucial for sequence recognition tasks. This paper proposes a novel semi-supervised learning method for STR that incorporates word-level consistency regularization from both visual and semantic aspects. Specifically, we devise a shortest path alignment module to align the sequential visual features of different views and minimize their distance. Moreover, we adopt a reinforcement learning framework to optimize the semantic similarity of the predicted strings in the embedding space. We conduct extensive experiments on several standard and challenging STR benchmarks and demonstrate the superiority of our proposed method over existing semi-supervised STR methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.