Celastrol, a tripterine derived from the traditional Chinese medicine plant Tripterygium wilfordii Hook F. (“Thunder of God Vine”), has been reported to have multiple effects, such as anti-inflammation, suppression of tumor angiogenesis, inhibition of tumor growth, induction of apoptosis and protection of cells against human neurodegenerative diseases. However, the mechanisms that underlie these functions are not well defined. In this study, we reported for the first time that Celastrol could induce HIF-1α protein accumulation in multiple cancer cell lines in an oxygen-independent manner and that the enhanced HIF-1α protein entered the nucleus and promoted the transcription of the HIF-1 target genes VEGF and Glut-1. Celastrol did not influence HIF-1α transcription. Instead, Celastrol induced the accumulation of the HIF-1α protein by inducing ROS and activating Akt/p70S6K signaling to promote HIF-1α translation. In addition, we found that the activation of Akt by Celastrol was transient. With increased exposure time, inhibition of Hsp90 chaperone function by Celastrol led to the subsequent depletion of the Akt protein and thus to the suppression of Akt activity. Moreover, in HepG2 cells, the accumulation of HIF-1α increased the expression of BNIP3, which induced autophagy. However, HIF-1α and BNIP3 did not influence the cytotoxicity of Celastrol because the main mechanism by which Celastrol kills cancer cells is through stimulating ROS-mediated JNK activation and inducing apoptosis. Furthermore, our data showed that the dose required for Celastrol to induce HIF-1α protein accumulation and enhance HIF-1α transcriptional activation was below its cytotoxic threshold. A cytotoxic dose of Celastrol for cancer cells did not display cytotoxicity in LO2 normal human liver cells, which indicated that the novel functions of Celastrol in regulating HIF-1 signaling and inducing autophagy might be used in new applications, such as in anti-inflammation and protection of cells against human neurodegenerative diseases. Future studies regarding these applications are required.
Abstract. The aim of the present study was to investigate the pathogenesis of metastatic prostate carcinoma, to find the metabolic pathways changed in the disease and to screen out the potential therapeutic drugs. GSE38241 was downloaded from Gene Expression Omnibus; the Geoquery package was applied to preprocessed expression profiling, and the differentially-expressed genes (DEGs) were selected with limma (linear regression model packages). Next, WikiPathways cluster analysis was performed for DEGs on a Gene Set Analysis Toolkit V2 platform, and DEGs with hypergeometric algorithms were calculated through gene set enrichment analysis. A total of 1,126 DEGs were identified between the normal prostate and metastatic prostate carcinoma. In addition, KPNA4, SYT1, PLCB1, SPRED1, MBNL2, RNF165, MEF2C, MBNL1, ZFP36L1 and CELF2, were found to be likely to play significant roles in the process of metastatic prostate carcinoma. The small molecules STOCK1N-35874 and 5182598 could simulate the state of normal cells well, while the small molecules MS-275 and quinostatin could simulate the state of metastatic prostate carcinoma cells. In conclusions, the small molecules STOCK1N-35874 and 5182598 were identified to be good potential therapeutic drugs for the treatment of metastatic prostate carcinoma, while the two small molecules MS-275 and quinostatin could cause metastatic prostate carcinoma.
Abstract. As a benign mesenchymal tumor, classic renal angiomyolipoma (AML) may obliterate the kidney parenchyma and cause renal hemorrhage. It has previously been reported that mesenchymal stem cells (MSCs) are involved in tumorigenesis; however, there have been no studies on stem cells with renal AML origin. In the present study, six females with classic renal AML received a partial or total nephrectomy. During surgery, tumor tissues were collected and culture expansion of adhesive fibroblastoid cells from these tissues was performed. We successfully isolated and cultured MSC-like cells from all six renal AML tumors. MSC characteristics, including morphology, immunophenotype and multidifferentiation potential were analyzed. Flow cytometry analysis revealed that these cells are highly similar to human bone marrow MSCs due to the expression of MSC-specific surface proteins, including CD29, CD44, CD73, CD90 and CD105. The stem cell-like nature of these cells is further supported by their adipogenic and osteogenic differentiation potentials when incubated in appropriate differentiation cocktails. Renal AML-derived adhesive cells possessing the characteristics of MSCs are described for the first time. They are a novel cell type which may be useful in future studies with regards to determining the role of stem cells in the formation and development of renal AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.