Bayesian network classifiers (BNCs) have proved their effectiveness and efficiency in the supervised learning framework. Numerous variations of conditional independence assumption have been proposed to address the issue of NP-hard structure learning of BNC. However, researchers focus on identifying conditional dependence rather than conditional independence, and information-theoretic criteria cannot identify the diversity in conditional (in)dependencies for different instances. In this paper, the maximum correlation criterion and minimum dependence criterion are introduced to sort attributes and identify conditional independencies, respectively. The heuristic search strategy is applied to find possible global solution for achieving the trade-off between significant dependency relationships and independence assumption. Our extensive experimental evaluation on widely used benchmark data sets reveals that the proposed algorithm achieves competitive classification performance compared to state-of-the-art single model learners (e.g., TAN, KDB, KNN and SVM) and ensemble learners (e.g., ATAN and AODE).
Learning from data that are too big to fit into memory poses great challenges to currently available learning approaches. Averaged n-Dependence Estimators (AnDE) allows for a flexible learning from out-of-core data, by varying the value of n (number of super parents). Hence, AnDE is especially appropriate for learning from large quantities of data. Memory requirement in AnDE, however, increases combinatorially with the number of attributes and the parameter n. In large data learning, number of attributes is often large and we also expect high n to achieve low-bias classification. In order to achieve the lower bias of AnDE with higher n but with less memory requirement, we propose a memory constrained selective AnDE algorithm, in which two passes of learning through training examples are involved. The first pass performs attribute selection on super parents according to available memory, whereas the second one learns an AnDE model with parents only on the selected attributes. Extensive experiments show that the new selective AnDE has considerably lower bias and prediction error relative to An DE, where n = n − 1, while maintaining the same space complexity and similar time complexity. The proposed algorithm works well on categorical data. Numerical data sets need to be discretized first.
Abstract. Averaged One-Dependence Estimators (AODE) is a popular and effective approach to Bayesian learning. In this paper, a new attribute selection approach is proposed for AODE. It can search in a large model space, while it requires only a single extra pass through the training data, resulting in a computationally efficient two-pass learning algorithm. The experimental results indicate that the new technique significantly reduces AODE's bias at the cost of a modest increase in training time. Its low bias and computational efficiency make it an attractive algorithm for learning from big data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.