The multimodal segmentation of medical images is essential for clinical applications as it allows medical professionals to detect anomalies, monitor treatment effectiveness, and make informed therapeutic decisions. However, existing segmentation methods depend on paired images of modalities, which may not always be available in practical scenarios, thereby limiting their applicability. To address this challenge, current approaches aim to align modalities or generate missing modality images without a ground truth, which can introduce irrelevant texture details. In this paper, we propose the energy-basedsemantic augmented segmentation (ESAS) model, which employs the energy of latent semantic features from a supporting modality to enhance the segmentation performance on unpaired query modality data. The proposed ESAS model is a lightweight and efficient framework suitable for most unpaired multimodal image-learning tasks. We demonstrate the effectiveness of our ESAS model on the MM-WHS 2017 challenge dataset, where it significantly improved Dice accuracy for cardiac segmentation on CT volumes. Our results highlight the potential of the proposed ESAS model to enhance patient outcomes in clinical settings by providing a promising approach for unpaired multimodal medical image segmentation tasks.
Virtual machine (VM) scheduling is one of the critical tasks in cloud computing. Many works have attempted to incorporate machine learning, especially reinforcement learning, to empower VM scheduling procedures. Although improved results are shown in several demo simulators, the performances in real-world scenarios are still underexploited. In this paper, we design a practical VM scheduling platform, i.e., VMAgent, to assist researchers in developing their methods on the VM scheduling problem. VMAgent consists of three components: simulator, scheduler, and visualizer. The simulator abstracts three general realistic scheduling scenarios (fading, recovering, and expansion) based on Huawei Cloud’s scheduling data, which is the core of our platform. Flexible configurations are further provided to make the simulator compatible with practical cloud computing architecture (i.e., Multi Non-Uniform Memory Access) and scenarios. Researchers then need to instantiate the scheduler to interact with the simulator, which is also pre-built in various types (e.g., heuristic, machine learning, and operations research) of scheduling algorithms to speed up the algorithm design. The visualizer, as an auxiliary component of the simulator and scheduler, facilitates researchers to conduct an in-depth analysis of the scheduling procedure and comprehensively compare different scheduling algorithms. We believe that VMAgent would shed light on the AI for the VM scheduling community, and the demo video is presented in https://bit.ly/vmagent-demo-video.
Virtual machine (VM) scheduling is one of the critical tasks in cloud computing. Many works have attempted to incorporate machine learning, especially reinforcement learning, to empower VM scheduling procedures. Although improved results are shown in several demo simulators, the performances in real-world scenarios are still underexploited. In this paper, we design a practical VM scheduling platform, i.e., VMAgent, to assist researchers in developing their methods on the VM scheduling problem. VMAgent consists of three components: simulator, scheduler, and visualizer. The simulator abstracts three general realistic scheduling scenarios (fading, recovering, and expansion) based on Huawei Cloud’s scheduling data, which is the core of our platform. Flexible configurations are further provided to make the simulator compatible with practical cloud computing architecture (i.e., Multi Non-Uniform Memory Access) and scenarios. Researchers then need to instantiate the scheduler to interact with the simulator, which is also pre-built in various types (e.g., heuristic, machine learning, and operations research) of scheduling algorithms to speed up the algorithm design. The visualizer, as an auxiliary component of the simulator and scheduler, facilitates researchers to conduct an in-depth analysis of the scheduling procedure and comprehensively compare different scheduling algorithms. We believe that VMAgent would shed light on the AI for the VM scheduling community, and the demo video is presented in https://bit.ly/vmagent-demo-video.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.