Rechargeable aluminum batteries (RABs) are amongst the most promising post-lithium energy storage systems (ESS) with a substantially higher specific volumetric capacity (8046 mA h cm−3), higher safety and lower cost.
Biomass has been utilized as an energy source for thousands of years typically in the form of wood and charcoal. Technological advances create new methodologies to extract energy and chemicals from biomass. The biomass-derived nanostructured porous carbons (BDNPCs) are the most promising sulfur hosts and interlayers in rechargeable lithium-sulfur (Li-S) batteries. In this article, a comprehensive review is provided in the synthesis of nanostructured porous carbon materials for high-performance rechargeable Li-S batteries by using biomass. The performances of the Li-S batteries dependent on the porous structures (micro, meso and hierarchical) from BDNPCs are discussed, which can provide an in-depth understanding and guide rational design of high-performance cathode materials by using low-cost, sustainable and natural bio-precursors. Furthermore, the current existing challenges and the future research directions for enhancing the performance of Li-S batteries by using natural biomass materials are also addressed.
Coralline-like N-doped hierarchically porous carbon (CNHPC) was prepared through a hydrothermal carbonization process using a sea pollutant enteromorpha as the starting material. The addition of a small amount of glucose during carbonization improved the yield of carbon, and the inherent N contents, especially for pyrrolic N and pyridinic N atoms. After loading 40 wt. % sulfur, the CNHPC/S composite, as a cathode in a Li-S battery, exhibited an initial discharge capacity of 1617 mAh g (96.5 % of theoretical capacity) at 0.1 C and a capacity loss of 0.05 % per charge-discharge cycle after 500 cycles at 0.5 C with a stable Coulombic efficiency of 100 % in carbonate based electrolyte. Such a great performance can be attributed to the coralline-like hierarchically porous infrastructure and inherently abundant N doping. Given the conversion of waste pollutants into valuable energy-storage materials and the easy process, this work features a promising approach to prepare C/S cathodes for Li-S batteries. The special structural and textural characteristics of CNHPC might be attractive to other practical applications such as supercapacitors and catalysis.
Metal-organic frameworks Mn(HCOO)3[(CH3)2NH2] (DMMnF) materials are prepared by hydrothermal growth technique. We analyze its crystal structure by X-ray Diffraction (XRD), chemical composition by infrared spectroscopy(IR).The results show that DMMnF belong to trigonal system, space group is R3-CH, the lattice constant is a=8.3330 (17) Å, c= 22.947 (11) Å, γ=120°,V=1379.09 (10) Å3, Z=6.The morphology of DMMnF crystal is rhombohedral, and the large flat surface is (012). IR spectra shows that organic functional groups of DMMnF are dimethylamino and formate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.