Aiming at the problems of large randomness, slow convergence speed, and deviation of Rapidly-Exploring Random Tree algorithm, a new node is generated by a cyclic alternating iteration search method and a bidirectional random tree search simultaneously. A vehicle steering model is established to increase the vehicle turning angle constraint. The Rapidly-Exploring Random Tree algorithm is improved and optimized. The problems of large randomness, slow convergence speed, and deviation of the Rapidly-Exploring Random Tree algorithm are solved. Node optimization is performed on the generated path, redundant nodes are removed, the length of the path is shortened, and the feasibility of the path is improved. The B-spline curve is used to insert the local end point, and the path is smoothed to make the generated path more in line with the driving conditions of the vehicle. The feasibility of the improved algorithm is verified in different scenarios. MATLAB/CarSim is used for joint simulation. Based on the vehicle model, virtual simulation is carried out to track the planned path, which verifies the correctness of the algorithm.
Path planning is a very important step for mobile smart vehicles in complex environments. Sampling based planners such as the Probabilistic Roadmap Method (PRM) have been widely used for smart vehicle applications. However, there exist some shortcomings, such as low efficiency, low reuse rate of the roadmap, and a lack of guidance in the selection of sampling points. To solve the above problems, we designed a pseudo-random sampling strategy with the main spatial axis as the reference axis. We optimized the generation of sampling points, removed redundant sampling points, set the distance threshold between road points, adopted a two-way incremental method for collision detections, and optimized the number of collision detection calls to improve the construction efficiency of the roadmap. The key road points of the planned path were extracted as discrete control points of the Bessel curve, and the paths were smoothed to make the generated paths more consistent with the driving conditions of vehicles. The correctness of the modified PRM was verified and analyzed using MATLAB and ROS to build a test platform. Compared with the basic PRM algorithm, the modified PRM algorithm has advantages related to speed in constructing the roadmap, path planning, and path length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.