Identification of all phosphorylation forms of known proteins is a major goal of the Chromosome-Centric Human Proteome Project (C-HPP). Recent studies have found that certain phosphoproteins can be encapsulated in exosomes and function as key regulators in tumor microenvironment, but no deep coverage phosphoproteome of human exosomes has been reported to date, which makes the exosome a potential source for the new phosphosite discovery. In this study, we performed highly optimized MS analyses on the exosomal and cellular proteins isolated from human colorectal cancer SW620 cells. With stringent data quality control, 313 phosphoproteins with 1091 phosphosites were confidently identified from the SW620 exosome, from which 202 new phosphosites were detected. Exosomal phosphoproteins were significantly enriched in the 11q12.1-13.5 region of chromosome 11 and had a remarkably high level of tyrosine-phosphorylated proteins (6.4%), which were functionally relevant to ephrin signaling pathway-directed cytoskeleton remodeling. In conclusion, we here report the first high-coverage phosphoproteome of human cell-secreted exosomes, which leads to the identification of new phosphosites for C-HPP. Our findings provide insights into the exosomal phosphoprotein systems that help to understand the signaling language being delivered by exosomes in cell-cell communications. The mass spectrometry proteomics data have been deposited to the ProteomeXchange consortium with the data set identifier PXD004079, and iProX database (accession number: IPX00076800).
Synovitis is a key contributor to the inflammatory environment in osteoarthritis (OA) joints. Currently, the biological therapy of OA is not satisfactory in multiple single-target trials on anti-TNF agents, or IL-1 antagonists. Systems biological understanding of the phosphorylation state in OA synovium is warranted to direct further therapeutic strategies. Therefore, in this study, we compared the human synovial phosphoproteome of the OA with the acute joint fracture subjects. We found that OA synovium had significantly more phosphoproteins, and 82 phosphoproteins could only be specifically found in all the OA samples. Differentially expressed proteins of the OA synovium were focusing on endoplasmic reticulum-/Golgi-associated secretion and negative regulation of cell proliferation, which was verified through an IL-1β-treated human synoviocyte (HS) in vitro model. With data-independent acquisition-based mass spectrometry, we found that IL-1β could induce HS to secrete proteins that were significantly associated with the endosomal/vacuolar pathway, endoplasmic reticulum/Golgi secretion, complement activation, and collagen degradation. Especially, we found that while specifically suppressing HS endocytosis, IL-1β could activate the secretion of 25 TNF-associated proteins, and the change of SERPINE2 and COL3A1 secretion was verified by immunoblotting. In conclusion, our results suggest that OA synovium has a polarized phosphoproteome to inhibit proliferation and maintain active secretion of HS, whereas IL-1β alone can transform HS to produce a synovitis-associated secretome, containing numerous TNF-associated secretory proteins in a TNF-independent mode.
Organoselenium have garnered attention because of their potential to be used as ingredients in new anti-aging and antioxidation medicines and food. Rotifers are frequently used as a model organism for aging research. In this study, we used Se-enriched Chlorella (Se- Chlorella), a novel organoselenium compound, to feed Brachionus plicatilis to establish a rotifer model with a prolonged lifespan. The results showed that the antioxidative effect in Se-enriched rotifer was associated with an increase in guaiacol peroxidase (GPX) and catalase (CAT). The authors then performed the first proteogenomic analysis of rotifers to understand their possible metabolic mechanisms. With the de novo assembly of RNA-Seq reads as the reference, we mapped the proteomic output generated by iTRAQ-based mass spectrometry. We found that the differentially expressed proteins were primarily involved in antireactive oxygen species (ROS) and antilipid peroxidation (LPO), selenocompound metabolism, glycolysis, and amino acid metabolisms. Furthermore, the ROS level of rotifers was diminished after Se- Chlorella feeding, indicating that Se- Chlorella could help rotifers to enhance their amino acid metabolism and shift the energy generating metabolism from tricarboxylic acid cycle to glycolysis, which leads to reduced ROS production. This is the first report to demonstrate the anti-aging effect of Se- Chlorella on rotifers and to provide a possible mechanism for this activity. Thus, Se- Chlorella is a promising novel organoselenium compound with the potential to prolong human lifespans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.