The root economics space (RES) is multidimensional and largely shaped by belowground biotic and abiotic influences. However, how root-fungal symbioses and edaphic fertility drive this complexity remains unclear.Here, we measured absorptive root traits of 112 tree species in temperate and subtropical forests of China, including traits linked to functional differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) hosts.Our data, from known mycorrhizal tree species, revealed a 'fungal-symbiosis' dimension distinguishing AM from ECM species. This divergence likely resulted from the contrasting mycorrhizal evolutionary development of AM vs ECM associations. Increased root tissue cortical space facilitates AM symbiosis, whereas increased root branching favours ECM symbiosis. Irrespective of mycorrhizal type, a 'root-lifespan' dimension reflecting aspects of root construction cost and defence was controlled by variation in specific root length and root tissue density, which was fully independent of root nitrogen content. Within this function-based RES, we observed a substantial covariation of axes with soil phosphorus and nitrate levels, highlighting the role played by these two axes in nutrient acquisition and conservation.Overall, our findings demonstrate the importance of evolved mycorrhizal symbiosis pathway and edaphic fertility in framing the RES, and provide theoretical and mechanistic insights into the complexity of root economics.
Fine roots play a prominent role in forest carbon flux, nutrient and water acquisition; however, information on fine roots remains scarce due to the limitation of measuring methods. In this study, a nested regression method was used to estimate the biomass and surface area of fine roots of individual Larix gmelinii trees that dominate northernmost China. Aboveground traits including leaf biomass, leaf area, stem volume and aboveground biomass were also investigated. In particular, the relationships between leaves and fine roots, in terms of biomass and area, were examined. The results revealed that allometric models of fine roots, total roots, and leaves consistently fit well with Adj. R 2 = 0.92-0.97. The root-shoot ratio at the individual tree level was approximately 0.28. There were robust positive linear correlations between absorption (fine root biomass, fine root surface area) and production (leaf biomass, leaf area) (Adj. R 2 = 0.95, p < 0.001). In conclusion, the close coupling between fine roots and leaves presented in this study provides support for the theory of functional equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.