Decreased brain energy metabolism is correlated with cognitive impairment in Alzheimer's disease (AD). Accumulating evidence indicates that lactate and monocarboxylate transporters (MCTs) participate in brain energy metabolism. To date, changes in lactate level and expression of MCTs in AD remain unclear. This study was conducted to detect the changes in lactate content and expression of MCT2 in Aβ25-35-treated rat model of AD. Sprague-Dawley rats were randomly divided into control and model groups, which received bilateral intrahippocampal injections of saline and Aβ25-35, respectively. Cognitive functions were detected by Morris water-maze test. Lactate content in the cerebral cortex and hippocampus was measured by absorbance assay. The MCT2 level in the brain was examined by immunohistochemistry and Western blot. Morris water-maze test showed that the model group exhibited impaired learning and memory compared with the control group. Lactate content in the cerebral cortex and hippocampus was decreased in the model group compared with that in the control group. Immunohistochemistry and Western blot showed that the expression of MCT2 in the model group significantly decreased compared with that in the control group. Results indicate that decreased lactate content and downregulated MCT2 expression in the cerebral cortex and hippocampus reflected impaired energy metabolism in the brain, which may participate in the pathologic progression of AD.
This study aimed to assess the role of microRNAs (miRNAs) in regulating monocarboxylate transporter-1 (MCT1) expression in rat brain after permanent focal cerebral ischemia to identify a new target for early treatment of cerebral ischemia. Focal cerebral ischemia was induced by permanent middle cerebral artery occlusion (pMCAO) in rats. Morphology and protein expression levels of MCT1 were assessed by immunofluorescence and Western blotting. Using bioinformatics and double luciferase reporter assays, rno-miR-124-3p was selected as a direct target for rat MCT1. Expression of rno-miR-124-3p after pMCAO was detected. Then, rats were treated with rno-miR-124-3p agomir via lateral ventricle injection, and after 6 h or 24 h ischemia, rno-miR-124-3p expression and gene and protein expression of MCT-1 were detected by qRT-PCR and Western blotting. Brain infarction was identified by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Results showed that pMCAO induced brain infarction and increased the expression of MCT1. The levels of rno-miR-124-3p after pMCAO were in contrast to those of MCT1 protein in ischemic region, while declined after 3, 6 and 12 h of pMCAO in ischemic penumbra. After administration of rno-miR-124-3p agomir, MCT1 mRNA and protein levels were increased after 6 h of pMCAO, while decreased after 24 h of pMCAO. Meanwhile, rno-miR-124-3p levels increased after both times. TTC staining showed treatment with rno-miR-124-3p agomir reduced brain infarction. The role of rno-miR-124-3p in regulating MCT1 was as a positive regulator after 6 h of pMCAO, while a negative regulator after 24 h of pMCAO, however, both activities had protective effects against cerebral ischemia.
Curcumin is a natural product with several anti-Alzheimer's disease (AD) neuroprotective properties. This study aimed to investigate the effects of curcumin on memory deficits, lactate content, and monocarboxylate transporter 2 (MCT2) in APP/PS1 mouse model of AD. APP/PS1 transgenic mice and wild-type (WT) C57BL/6J mice were used in the present study. Spatial learning and memory of the mice was detected using Morris water-maze test. Cerebral cortex and hippocampus lactate contents were detected using lactate assay. MCT2 expression in the cerebral cortex and hippocampus was examined by immunohistochemistry and Western blotting. Results showed that spatial learning and memory deficits were improved in curcumintreated APP/PS1 mouse group compared with those in APP/PS1 mice group. Brain lactate content and MCT2 protein level were increased in curcumintreated APP/PS1 mice than in APP/PS1 mice. In summary, our findings indicate that curcumin could ameliorate memory impairments in APP/PS1 mouse model of AD. This phenomenon may be at least partially due to its improving effect on the lactate content and MCT2 protein expression in the brain. Anat Rec, 302:332-338, 2019. Alzheimer's disease (AD) is the most common neurodegenerative disease that affects aged people (Adav and Sze, 2016). Patients with AD exhibit progressive behavioral impairments, including memory loss, cognitive decline, and personality changes. Emerging evidence suggests that decreased energy metabolism is an important
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.