Objectives: Hepatitis C virus (HCV) F protein is a newly identified protein encoded by an alternative open reading frame that +1 overlaps core-encoding gene. It has been found that regulation of c-myc and p53 genes by HCV core protein is involved in liver cancer genesis. We wondered whether HCV F protein exerts similar or adverse regulatory effects on the transcription of c-myc and p53 genes. Methods: HCV F gene-containing, plasmid pcDNA3.1-F and HCV core gene-containing pcDNA3.1-C were constructed and transiently transfected into HepG2 cells. Real-time quantitative PCR or Western blotting was used to determine the changes at transcription or translation levels of c-myc and p53 genes. Results: The transcription level of c-myc was much higher in pcDNA3.1-F transfected cells than those without plasmid transfected. Whereas the level of p53 transcription in pcDNA3.1-F transfected cells was lower than those in the parental cells. Moreover, levels of c-myc expression were up-regulated and those of p53 expression were down-regulated by HCV F protein. Conclusions: HCV F protein is of regulatory properties in cellular oncogene c-myc and anti-oncogene p53, which may be implicated in the formation of hepatocellular carcinoma.
Long noncoding RNAs (lncRNA) play critical roles in the development of cancer, including hepatocellular carcinoma (HCC). However, the mechanisms underlying their deregulation remain largely unexplored. In this study, we report that two lncRNAs frequently downregulated in HCC function as tumor suppressors and are epigenetically silenced by histone methyltransferase EZH2. lncRNAs TCAM1P-004 and RP11-598D14.1 were inhibited by EZH-mediated trimethylation of H3K27me3 at their promoters. Downregulation of TCAM1P-004 and RP11-598D14.1 was frequently observed in HCC tumors compared with adjacent normal tissues. Both lncRNAs inhibited cell growth, cell survival, and transformation in HCC cells in vitro as well as tumor formation in vivo. Using RNA pull-down and mass spectrometry, we demonstrated that TCAM1P-004 bound IGF2BP1 and HIST1H1C, whereas RP11-598D14.1 bound IGF2BP1 and STAU1. These lncRNA-protein interactions were critical in regulating p53, MAPK, and HIF1a pathways that promoted cell proliferation in HCC. Overexpression of EZH2 was critical in repressing TCAM1P-004 and RP11-598D14.1, and EZH2-TCAM1P-004/ RP11-598D14.1-regulated pathways were prevalent in human HCC. Aberrant suppression of TCAM1P-004 and RP11-598D14.1 led to loss of their tumor-suppressive effects by disrupting the interaction with IGF2BP1, HIST1H1C, and STAU1, which in turn promoted HCC development and progression. Collectively, these findings demonstrate the role of TCAMP1P-004 and RP11-598D14.1 in suppressing tumor growth and suggest that EZH2 may serve as a therapeutic target in HCC. Significance: EZH2-mediated loss of lncRNAs TCAM1P-004 and RP11-598D14.1 hinders the formation of tumor suppressor lncRNA-protein complexes and subsequently promotes HCC growth.
Peptide recognition through the MHC class I molecule by cytotoxic T lymphocytes (CTLs) leads to the killing of cancer cells. A potential challenge for T-cell immunotherapy is that dendritic cells (DCs) are exposed to the MHC class I-peptide complex for an insufficient amount of time. To improve tumour antigen presentation to T cells and thereby initiate a more effective T-cell response, we generated artificial antigen-presenting cells (aAPCs) by incubating human immature DCs (imDCs) with poly(lactic-co-glycolic) acid nanoparticles (PLGA-NPs) encapsulating tumour antigenic peptides, followed by maturation with lipopolysaccharide. Tumour antigen-specific CTLs were then induced using either peptide-loaded mature DCs (mDCs) or aAPCs, and their activities were analysed using both ELISpot and cytotoxicity assays. We found that the aAPCs induced significantly stronger tumour antigen-specific CTL responses than the controls, which included both mDCs and aAPCs loaded with empty nanoparticles. Moreover, frozen CTLs that were generated by exposure to aAPCs retained the capability to eradicate HLA-A2-positive tumour antigen-bearing cancer cells. These results indicated that aAPCs are superior to DCs when inducing the CTL response because the former are capable of continuously presenting tumour antigens to T cells in a sustained manner. The development of aAPCs with PLGA-NPs encapsulating tumour antigenic peptides is a promising approach for the generation of effective CTL responses in vitro and warrants further assessments in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.