In this paper, we present an infrared small target detection method based on Boolean map visual theory. The scheme is inspired by the phenomenon that small targets can often attract human attention due to two characteristics: brightness and Gaussian-like shape in the local context area. Motivated by this observation, we perform the task under a visual attention framework with Boolean map theory, which reveals that an observer's visual awareness corresponds to one Boolean map via a selected feature at any given instant. Formally, the infrared image is separated into two feature channels, including a color channel with the original gray intensity map and an orientation channel with the orientation texture maps produced by a designed second order directional derivative filter. For each feature map, Boolean maps delineating targets are computed from hierarchical segmentations. Small targets are then extracted from the target enhanced map, which is obtained by fusing the weighted Boolean maps of the two channels. In experiments, a set of real infrared images covering typical backgrounds with sky, sea, and ground clutters are tested to verify the effectiveness of our method. The results demonstrate that it outperforms the state-of-the-art methods with good performance.
Robust small target detection is one of the key techniques in IR search and tracking systems for self-defense or attacks. In this paper we present a robust solution for small target detection in a single IR image. The key ideas of the proposed method are to use the directional support value of Gaussian transform (DSVoGT) to enhance the targets, and use the multiscale representation provided by DSVoGT to reduce the false alarm rate. The original image is decomposed into sub-bands in different orientations by convolving the image with the directional support value filters, which are deduced from the weighted mapped least-squares-support vector machines (LS-SVMs). Based on the sub-band images, a support value of Gaussian matrix is constructed, and the trace of this matrix is then defined as the target measure. The corresponding multiscale correlations of the target measures are computed for enhancing target signal while suppressing the background clutter. We demonstrate the advantages of the proposed method on real IR images and compare the results against those obtained from standard detection approaches, including the top-hat filter, max-mean filter, max-median filter, min-local-Laplacian of Gaussian (LoG) filter, as well as LS-SVM. The experimental results on various cluttered background images show that the proposed method outperforms other detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.