Linearized model of the system is often used in control design. It is generally believed that we can obtain the linearized model as long as the Taylor expansion method is used for the nonlinear model. This paper points out that the Taylor expansion method is only applicable to the linearization of the original nonlinear function. If the Taylor expansion is used for the derived nonlinear equation, wrong results are often obtained. Taking the linearization model of the maglev system as an example, it is shown that the linearization should be carried out with the process of equation derivation. The model is verified by nonlinear system simulation in Simulink. The method in this paper is helpful to write the linearized equation of the control system correctly.
The coupling between variables in the multi-input multi-output (MIMO) systems brings difficulties to the design of the controller. Aiming at this problem, this paper combines the particle swarm optimization (PSO) with the coefficient diagram method (CDM) and proposes a robust controller design strategy for the MIMO systems. The decoupling problem is transformed into a compensator parameter optimization problem, and PSO optimizes the compensator parameters to reduce the coupling effect in the MIMO systems. For the MIMO system with measurement noise, the effectiveness of CDM in processing measurement noise is analyzed. This paper gives the control design steps of the MIMO systems. Finally, simulation experiments of four typical MIMO systems demonstrate the effectiveness of the proposed method.
Flexible solar panels play an essential role in the field of aerospace. However, many difficulties appear in the control design due to the existence of a weakly damped resonance module. The design for flexible systems often causes an unstable controller so that the systems after design still have trouble in putting into practice. We adopt H∞ loop-shaping design and put forward a directive method for selecting the weighting function. The simulation results indicate that system bandwidth is optimized based on the stable controller. In this way, the control precision and response speed of the system are improved. In the meantime, the system is easy to put into use.
This paper proposes an H∞ observer based on descriptor systems to estimate the state of charge (SOC). The battery’s open-current voltage is chosen as a generalized state variable, thereby avoiding the artificial derivative calculation of the algebraic equation for the SOC. Furthermore, the observer’s dynamic performance is saved. To decrease the impacts of the uncertain noise and parameter perturbations, nonlinear H∞ theory is implemented to design the observer. The sufficient conditions for the H∞ observer to guarantee the disturbance suppression performance index are given and proved by the Lyapunov stability theory. This paper systematically gives the design steps of battery SOC H∞ observers. The simulation results highlight the accuracy, transient performance, and robustness of the presented method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.