The bacterial community composition and function in the gastrointestinal tracts (GITs) of dairy cattle is very important, since it can influence milk production and host health. However, our understanding of bacterial communities in the GITs of dairy cattle is still very limited. This study analysed bacterial communities in ten distinct GIT sites (the digesta and mucosa of the rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum) in six dairy cattle. The study observed 542 genera belonging to 23 phyla distributed throughout the cattle GITs, with the Firmicutes, Bacteroidetes and Proteobacteria predominating. In addition, data revealed significant spatial heterogeneity in composition, diversity and species abundance distributions of GIT microbiota. Furthermore, the study inferred significant differences in the predicted metagenomic profiles among GIT regions. In particular, the relative abundances of the genes involved in carbohydrate metabolism were overrepresented in the digesta samples of forestomaches, and the genes related to amino acid metabolism were mainly enriched in the mucosal samples. In general, this study provides the first deep insights into the composition of GIT microbiota in dairy cattle, and it may serve as a foundation for future studies in this area.
Currently, knowledge about the impact of high-grain (HG) feeding on rumen microbiota and metabolome is limited. In this study, a combination of the 454 pyrosequencing strategy and the mass spectrometry-based metabolomics technique was applied to investigate the effects of increased dietary grain (0%, 25% and 50% maize grain) on changes in whole ruminal microbiota and their metabolites using goat as a ruminant model. We observed a significant influence of HG feeding in shaping the ruminal bacterial community structure, diversity and composition, with an overall dominance of bacteria of the phylum Firmicutes along with a low abundance of Bacteriodetes in the HG group. High-grain feeding increased the number of ciliate and methanogens, and decreased the density of anaerobic fungi and the richness of the archaeal community. The metabolomics analysis revealed that HG feeding increased the levels of several toxic, inflammatory and unnatural compounds, including endotoxin, tryptamine, tyramine, histamine and phenylacetate. Correlation analysis on the combined datasets revealed some potential relationships between ruminal metabolites and certain microbial species. Information about these relationships may prove useful in either direct (therapeutic) or indirect (dietary) interventions for ruminal disorders due to microbial compositional shifts, such as ruminal acidosis.
Alterations in rumen epithelial tight junctions (TJs) at the tissue and molecular levels during high-grain (HG) diet feeding are unknown. Here, 10 male goats were randomly assigned to either a hay diet (0% grain; n ϭ 5) or HG diet group (65% grain; n ϭ 5) to characterize the changes in ruminal epithelial structure and TJ protein expression and localization using scanning and transmission electron microscopy, quantitative real-time PCR, Western blot analysis, and immunofluorescence. After 7 wk of feeding, ruminal free LPS in HG group increased significantly (P Ͻ 0.001) compared with the hay group, and free LPS in the peripheral blood was detectable with concentrations of 0.8 Ϯ 0.20 EU/ml, while not detectable in the control, suggesting a leakage of LPS into the blood in the HG group. Correspondingly, the HG-fed goats showed profound alterations in ruminal epithelial structure and TJ proteins, depicted by marked epithelial cellular damage and intercellular junction erosion, down-regulation of TJ proteins claudin-4, occludin, and zonula occludens-1 mRNA and protein expression, as well as redistribution of claudin-1, claudin-4, and occludin. Furthermore, these changes in TJ proteins in the HG group were coupled with the upregulation of mRNA levels for the cytokines TNF-␣ and IFN-␥ in the ruminal epithelia. These results demonstrated for the first time that the HG diet feeding caused disruption of ruminal epithelial TJs that was associated with a local inflammatory response in the rumen epithelium. These findings may provide new insights into understanding the role of TJ proteins in the ruminal epithelial immune homeostasis of ruminants. rumen epithelium; high-grain diet; tight junction protein; lipopolysaccharide; inflammation IN CURRENT INTENSIVE RUMINANT production system, it has become common to use high-concentrate diets (high-grain, HG) to maximize energy intake and to improve milk production or daily weight gain, but highly fermentable diets can put the animal at risk. Rapidly fermentable nonstructural carbohydrates increase the rate of fermentation acid production in the rumen, and the accumulation of the acids leads to a decrease in ruminal pH, hyperosmolarity, and an increase in ruminal toxin concentration (2, 29). Previous studies have investigated the specific effect of low pH (9, 26), hyperosmolarity (20, 34), or an exposure to toxins (7) on ruminal epithelial barrier function in vitro. It should be acknowledged that any one or the combination of these factors may affect epithelial barrier function. In addition, the prominent histological alterations during HG feeding strongly suggest an impaired barrier function (35-37) that may provide the opportunity for the translocation of toxins and bacteria from the rumen into the blood, ultimately affecting animal health and productivity (28). Although there is fundamental knowledge about the consequences of HG feeding on ruminal epithelial barrier function, remarkably little information is currently available about the underlying molecular changes in ruminal epi...
Background Gastrointestinal tract (GIT) microbiomes in ruminants play major roles in host health and thus animal production. However, we lack an integrated understanding of microbial community structure and function as prior studies. are predominantly biased towards the rumen. Therefore, to acquire a microbiota inventory of the discrete GIT compartments, In this study, we used shotgun metagenomics to profile the microbiota of 370 samples that represent 10 GIT regions of seven ruminant species. Results Our analyses reconstructed a GIT microbial reference catalog with > 154 million nonredundant genes and identified 8745 uncultured candidate species from over 10,000 metagenome-assembled genomes. The integrated gene catalog across the GIT regions demonstrates spatial associations between the microbiome and physiological adaptations, and 8745 newly characterized genomes substantially expand the genomic landscape of ruminant microbiota, particularly those from the lower gut. This substantially expands the previously known set of endogenous microbial diversity and the taxonomic classification rate of the GIT microbiome. These candidate species encode hundreds of enzymes and novel biosynthetic gene clusters that improve our understanding concerning methane production and feed efficiency in ruminants. Overall, this study expands the characterization of the ruminant GIT microbiota at unprecedented spatial resolution and offers clues for improving ruminant livestock production in the future. Conclusions Having access to a comprehensive gene catalog and collections of microbial genomes provides the ability to perform efficiently genome-based analysis to achieve a detailed classification of GIT microbial ecosystem composition. Our study will bring unprecedented power in future association studies to investigate the impact of the GIT microbiota in ruminant health and production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.