BackgroundMale sterility (MS) is an effective tool for hybrid production. Although MS has been widely reported in other plants, such as Arabidopsis and rice, the molecular mechanism of MS in eggplant is largely unknown. To understand the mechanism, the comparative transcriptomic file of MS line and its maintainer line was analyzed with the RNA-seq technology.ResultsA total of 11,7695 unigenes were assembled and 19,652 differentially expressed genes (DEGs) were obtained. The results showed that 1,716 DEGs were shared in the three stages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these DEGs were mainly involved in oxidation-reduction, carbohydrate and amino acid metabolism. Moreover, transcriptional regulation was also the impact effector for MS and anther development. Weighted correlation network analysis (WGCNA) showed two modules might be responsible for MS, which was similar to hierarchical cluster analysis.ConclusionsA number of genes and pathways associated with MS were found in this study. This study threw light on the molecular mechanism of MS and identified several key genes related to MS in eggplant.Electronic supplementary materialThe online version of this article (10.1186/s12870-018-1430-2) contains supplementary material, which is available to authorized users.
Root-knot nematodes, Meloidogyne spp., cause considerable damage in eggplant production. Transferring of resistance genes from wild relatives would be valuable for the continued improvement of eggplant. Solanum aculeatissimum, a wild relative of eggplant possessing resistance to Meloidogyne incognita, is potentially useful for genetically enhancing eggplant. In the present study, we have isolated and characterized a nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance gene, designated as SacMi. The full-length cDNA of the SacMi gene was obtained using the technique of rapid-amplification of cDNA ends (RACE). The open reading frame of the SacMi gene was 4014 bp and encoded a protein of 1338 amino acids. Sequence analysis indicated that SacMi belong to the non- Toll/Interleukin-1 receptor (TIR)-NBS-LRR type disease-resistance genes. Interestingly, quantitative RT-PCR showed that SacMi is expressed at low levels in uninfected roots, but was up-regulated by infection with M. incognita. To investigate the role of SacMi in S. aculeatissimum resistance against M. incognica, the tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) system was used. Silencing of SacMi enhanced susceptibility of S. aculeatissimum plants to M. incognita, suggesting the possible involvement of SacMi in resistance against M. incognita infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.