The seafloor sulfide structures of inactive vents are known to host abundant and diverse microorganisms potentially supported by mineralogy of sulfides. However, little is known about the diversity and distribution of microbial functions. Here, we used genome-resolved metagenomics to predict microbial metabolic functions and the contribution of horizontal gene transfer to the functionality of microorganisms inhabiting several hydrothermally inactive seafloor deposits among globally distributed deep-sea vent fields. Despite of geographically distant vent fields, similar microbial community patterns were observed with the dominance of Gammaproteobacteria, Bacteroidota and previously overlooked Candidatus Patescibacteria. Metabolically flexible Gammaproteobacteria are major potential primary producers utilizing mainly sulfur, iron and hydrogen as electron donors coupled with oxygen and nitrate respiration for chemolithoautotrophic growth. In addition to heterotrophic microorganisms like free-living Bacteroidota, Ca. Patescibacteria potentially perform fermentative recycling of organic carbon. Finally, we provided evidence that many functional genes that are central to energy metabolism have been laterally transferred among members within the community and largely within the same class. Taken together, these findings shed light on microbial ecology and evolution in inactive seafloor sulfide deposits after the cessation of hydrothermal activities.
Reef sediments, the home for microbes with high abundances, provide an important source of carbonates and nutrients for the growth and maintenance of coral reefs. However, there is a lack of systematic research on the composition of microbial community in sediments of different coral reef sites and the effect of microbial functional capabilities on the coral reef ecosystem. In combination of biogeochemical measurements and metagenomics, we assessed microbial community compositions and functional diversity, as well as pro les of antibiotic resistance genes in surface sediments of 16 coral reef sites from the Xisha islands in the South China Sea. Reef sediment microbiomes are diverse and novel at lower taxonomic ranks, dominated by Proteobacteria and Planctomycetota. Most reef sediment bacteria potentially participate in biogeochemical cycling via oxidizing various organic and inorganic compounds as energy sources. High abundances of Proteobacteria (mostly Rhizobiales and Woeseiales) are metabolically exible and contain rhodopsin genes. Various classes of antibiotic resistance genes, hosted by diverse bacterial lineages, were identi ed to confer resistance to multidrug, aminoglycoside, and other antibiotics. Overall, by establishing a compressive microbial genome database, our ndings expanded the understanding of reef sediment microbial ecology and provided insights for their link to the coral reef ecosystem health.
Marine sediments can contain large amounts of alkanes and methylated aromatic hydrocarbons that are introduced by natural processes or anthropogenic activities. These compounds can be biodegraded by anaerobic microorganisms via enzymatic addition of fumarate. However, the identity and ecological roles of a significant fraction of hydrocarbon degraders containing fumarate-adding enzymes (FAE) in various marine sediments remains unknown. By combining phylogenetic reconstructions, protein homolog modelling, and functional profiling of publicly available metagenomes and genomes, 61 draft bacterial and archaeal genomes encoding anaerobic hydrocarbon degradation via fumarate addition were obtained. Besides Desulfobacterota (previously known as Deltaproteobacteria) that are well-known to catalyze these reactions, Chloroflexi are dominant FAE-encoding bacteria in hydrocarbon-impacted sediments, potentially coupling sulfate reduction or fermentation to anaerobic hydrocarbon degradation. Among Archaea, besides Archaeoglobi previously shown to have this capability, genomes of Heimdallarchaeota, Lokiarchaeota, Thorarchaeota and Thermoplasmata also suggest fermentative hydrocarbon degradation using archaea-type FAE. These bacterial and archaeal hydrocarbon degraders occur in a wide range of marine sediments, including high abundances of FAE-encoding Asgard archaea associated with natural seeps and subseafloor ecosystems. Our results expand the knowledge of diverse archaeal and bacterial lineages engaged in anaerobic degradation of alkanes and methylated aromatic hydrocarbons.
Background: Marine sediments can contain large amounts of alkanes and methylated aromatic hydrocarbons that are introduced by natural processes or anthropogenic activities. These compounds can be biodegraded by anaerobic microorganisms via enzymatic addition of fumarate. Previous gene- and genome-based surveys have detected ubiquitous and novel fumarate-adding enzymes (FAE), but these were neither confirmed as occurring within full degradation pathways nor affiliated with known organisms. The identity and ecological roles of a significant fraction of anaerobic hydrocarbon degraders in marine sediments therefore remains unknown.Results: By combining phylogenetic reconstructions, protein homolog modelling, and functional profiling of publicly available and newly sequenced metagenomes and genomes, 61 draft bacterial and archaeal genomes encoding anaerobic hydrocarbon degradation via fumarate addition were obtained. Besides Deltaproteobacteria that are well-known to catalyze these reactions, Chloroflexi are dominant FAE-encoding bacteria in hydrocarbon-impacted sediments, potentially coupling sulfate reduction or fermentation to anaerobic hydrocarbon degradation. Among Archaea, besides Archaeoglobi previously shown to have this capability, genomes of Heimdallarchaeota, Lokiarchaeota, Thorarchaeota and Thermoplasmata also suggest fermentative hydrocarbon degradation using archaea-type FAE. The biogeography survey reveals these bacterial and archaeal hydrocarbon degraders occur in a wide range of marine sediments, including high abundances of FAE-encoding Asgard archaea associated with natural seeps and subseafloor ecosystems.Conclusions: Our results expand the knowledge of novel microbial lineages engaged in anaerobic degradation of alkanes and methylated aromatic hydrocarbons, and shed new light on the importance of marine sedimentary archaea in hydrocarbon degradation.
Reef sediments, the home for microbes with high abundances, provide an important source of carbonates and nutrients for the growth and maintenance of coral reefs. However, there is a lack of systematic research on the composition of microbial community in sediments of different coral reef sites and the effect of microbial functional capabilities on the coral reef ecosystem. In combination of biogeochemical measurements and metagenomics, we assessed microbial community compositions and functional diversity, as well as profiles of antibiotic resistance genes in surface sediments of 16 coral reef sites from the Xisha islands in the South China Sea. Reef sediment microbiomes are diverse and novel at lower taxonomic ranks, dominated by Proteobacteria and Planctomycetota. Most reef sediment bacteria potentially participate in biogeochemical cycling via oxidizing various organic and inorganic compounds as energy sources. High abundances of Proteobacteria (mostly Rhizobiales and Woeseiales) are metabolically flexible and contain rhodopsin genes. Various classes of antibiotic resistance genes, hosted by diverse bacterial lineages, were identified to confer resistance to multidrug, aminoglycoside, and other antibiotics. Overall, by establishing a compressive microbial genome database, our findings expanded the understanding of reef sediment microbial ecology and provided insights for their link to the coral reef ecosystem health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.