Internet of Things (IoTs) enables entities every day to communicate and collaborate with each other for providing information, data and services to inhabitants and users. IoTs consists of a large number of smart devices that can generate immense amount of data with different types. These sensors raw data needs to be modeled in a certain structure before filtering and processing to provision context information. This process is called context modeling. Context modeling provides definition of how context data are structured and maintained through context aware system.However, employing model for every context type through context aware application is static and is specified by the application developer. The main problem in IoTs is that the structure of context data changes overtime, therefore static modeling cannot be adaptable for modeling these changes. In this paper, a new dynamic approach for context modeling based on genetic algorithm and satisfaction factor is proposed. Firstly, the proposed approach uses genetic algorithm to find the best matching between a set of contexts and a set of available context models. Secondly, it uses a satisfaction factor to calculate the satisfaction degree for each context with each available context model and select the context model with high satisfaction degree as the structure model of this context, dynamically. In addition, flexibility indicator property and context based are defined to measure the performance of the proposed approach. The results of conducted simulations show that the proposed approach achieves higher performance than static approach for context modeling.
Alzheimer's disease (AD) is an advanced and incurable neurodegenerative disease that causes progressive impairment of memory and cognitive functions due to the deterioration of brain cells. Early diagnosis is substantial to avoid permanent memory loss and develop treatments that will be subtracted in the future. Deep learning (DL) is a vital technique for medical imaging systems for AD diagnostics. The problem is multi-class classification seeking high accuracy. DL models have shown strong performance accuracy for multi-class prediction. In this paper, a proposed DL architecture is created to classify magnetic resonance imaging (MRI) to predict different stages of AD-based pre-trained Convolutional Neural Network (CNN) models and optimization algorithms. The proposed model architecture attempts to find the optimal subset of features to improve classification accuracy and reduce classification time. The pre-trained DL models, ResNet-101 and DenseNet-201, are utilized to extract features based on the last layer, and the Rival Genetic algorithm (RGA) and Pbest-Guide Binary Particle Swarm Optimization (PBPSO) are applied to select the optimal features. Then, the DL features and selected features are passed separately through created classifier for classification. The results are compared and analyzed by accuracy, performance metrics, and execution time. Experimental results showed that the most efficient accuracies were obtained by PBPSO selected features which reached 87.3% and 94.8% accuracy with less time of 46.7 sec, 32.7 sec for features based ResNet-101 and DenseNet-201, receptively.
Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.
Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.