Of great concern is the increased frequency of carbapenem-resistant Acinetobacter baumannii (CRAB) causing healthcare-associated infections. Different classes of β-lactamases are involved in this resistance through hydrolyzing carbapenems. Multilocus sequence typing (MLST) has been applied successfully for characterizing different varieties of bacterial pathogens epidemiologically. In the present study, we aimed to type and characterize the resistance profile of clinical isolates of CRAB causing healthcare-associated infections in patients admitted to Kasr Al-Aini hospital, using MLST, and compare with sequence types (STs) from other countries. A total of 50 isolates were collected from clinical samples (predominantly wound and blood), then identified by blaOXA-51-like gene PCR, and subjected to Oxford MLST scheme. The ST was designated according to PubMLST database, and e-BURST algorithm was used to assign clonal complexes. Four sets of multiplex PCR were performed to detect common carbapenem resistance genes. ST391 was the predominant ST detected in 17 cases, 70.5% of which harbored blaOXA-23 alone, both blaOXA-23 and blaKPC in 11.8%. Newly recognized 13 STs were submitted to the PubMLST database. Carbapenem resistance due to blaOXA-23 carbapenemase was detected in 36/50 (72%), followed by blaOXA-23 concomitant with blaKPC in 7/50 (14%), while blaNDM with blaOXA-58 in 3/50 (6%) and blaNDM alone in 1 case (2%). To conclude, this study demonstrates the propagation of highly resistant clone of STs 391 and 1151, carrying blaOXA-23 genes, with the first report of blaKPC in blaOXA carrying CRAB and the presence of new STs by performing the MLST technique in an Egyptian laboratory facility.
Acinetobacter baumannii (A. baumannii) represents a global threat owing to its ability to resist most of the currently available antimicrobial agents. Moreover, emergence of carbapenem resistant A. baumannii (CR-AB) isolates limits the available treatment options. Enzymatic degradation by variety of ß-lactamases, have been identified as the most common mechanism of carbapenem resistance in A. baumannii. The alarming increase in the prevalence of CR-AB necessitates continuous screening and molecular characterization to appreciate the problem. The present study was performed to assess the prevalence and characterize carbapenemases among 206 CR-AB isolated from various clinical specimens collected from different intensive care units at Kasr Al-Aini Hospital. All isolates were confirmed to be A. baumannii by detection of the blaOXA-51-like gene. Molecular screening of 13 common Ambler class bla carbapenemases genes in addition to insertion sequence (IS-1) upstream OXA-23 were performed by using four sets of multiplex PCR, followed by identification using gene sequencing technology. Among the investigated genes, the prevalence of blaOXA-23, and blaOXA-58 were 77.7%, and 1.9%, respectively. The ISAba1 was detected in 10% of the blaOXA-23 positive isolates. The prevalence of metallo-β-lactamases (MBLs) studied; blaNDM-1, blaSPM, blaVIM, blaSIM-1 were 11.7%, 6.3%, 0.5%, and 0.5% respectively. One of class A; bla KPC was detected in 10.7% of the investigated isolates. blaOXA-24/40, blaIMP, blaGES, blaVEB and blaGIM were not detected in any of the studied isolates. Moreover, 18.4% of the isolates have shown to harbor two or more of the screened bla genes. We concluded that the most prevalent type of ß-lactamases genes among CR-AB isolates collected from Egyptian patients were blaOXA-23 followed by blaNDM-1 and blaKPC.
Background Candidemia is a pervasive problem associated with significant morbidity and mortality in health care settings. This study aimed to determine the changing distribution of Candida species and the emergence of uncommon species. Methods This was a cross-sectional study performed in two Cairo University hospitals between 2019 and 2020. All Candida species isolates recovered from blood cultures of adults and pediatrics patients admitted to the hospitals were included. Candida isolates were identified by chromogenic Candida agar and Vitek2 YST identification card. Candida kefyr was confirmed by chip array. Results Candida species were responsible for 1.6% of bloodstream infections in adults and 10.8% in pediatric patients. C. albicans was the most prevalent species representing 27.8% in adults and 48.3% in pediatrics. Non-albicans species (NAC) represented the most isolated Candida species among adults and pediatrics (72.2% and 51.6%, respectively) with the predominance of C. tropicalis (27.8% and 22.5%, respectively) followed by C. parapsilosis (16.7% and 10.8%, respectively). The uncommon Candida, which is Candida species other than C. albicans, C. parapsilosis, C. tropicalis, C. glabrata, and C. krusei, represents 16.6% and 14% of all candidemia in adults and pediatrics, respectively. Only one of each of C. lusitaniae, C. utilis, and C. kefyr were detected in adults. C. lusitaniae was the most frequently recovered uncommon Candida among pediatrics resulting in 6.4% of candidemia followed by C. famata (4.3%), C. utilis (2.2%), and C. kefyr (1.1%). Conclusions C. albicans is still the primary species isolated from pediatrics and adults with candidemia despite the considerable shift to the non-albicans species. C. tropicalis and C. parapsilosis are the most prevalent NAC. The increased prevalence of uncommon Candida species is alarming and necessitates a prompt stewardship program.
Acinetobacter baumannii (A. baumannii) represents a global threat owing to its ability to resist most of the currently available antimicrobial agents. Moreover, emergence of carbapenem resistant A. baumannii (CR-AB) isolates limits the available treatment options. Enzymatic degradation by variety of ß-lactamases, have been identified as the most common mechanism of carbapenem resistance in A. baumannii. The alarming increase in the prevalence of CR-AB necessitates continuous screening and molecular characterization to appreciate the problem. The present study was performed to assess the prevalence and characterize carbapenemases among 206 CR-AB isolated from various clinical specimens collected from different intensive care units at Kasr Al-Aini Hospital. All isolates were confirmed to be A. baumannii by detection of the blaOXA-51-like gene. Molecular screening of 13 common Ambler class bla carbapenemases genes in addition to insertion sequence (IS-1) upstream OXA-23 was performed by using four sets of multiplex PCR, followed by identification using gene sequencing technology. Among the investigated genes, the prevalence of blaOXA-23, and blaOXA-58 were 77.7%, and 1.9%, respectively. The ISAba1 was detected in 10% of the blaOXA-23 positive isolates. The prevalence of metallo-β-lactamases (MBLs) studied; blaNDM-1, blaSPM, blaVIM, blaSIM-1 were 11.7%, 6.3%, 0.5%, and 0.5% respectively. One of class A; bla KPC was detected in 10.7% of the investigated isolates. blaOXA-24/40, blaIMP, blaGES, blaVEB and blaGIM were not detected in any of the studied isolates. Moreover, 18.4% of the isolates have shown to harbor two or more of the screened bla genes. We concluded that the most prevalent type of ß-lactamases genes among CR-AB isolates collected from Egyptian patients were blaOXA-23 followed by blaNDM-1 and blaKPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.