The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.
We previously discovered a role of the oral commensal Streptococcus oralis as an accessory pathogen. S. oralis increases the virulence of Candida albicans infections in murine oral candidiasis and epithelial cell models through mechanisms which promote the formation of tissue-damaging biofilms. Lactobacillus species have known inhibitory effects on biofilm formation of many microbes, including Streptococcus species. Agent-based modeling has great advantages as a means of exploring multifaceted relationships between organisms in complex environments such as biofilms.
We previously discovered a role of the oral commensal Streptococcus oralis as an accessory pathogen. S. oralis increases the virulence of Candida albicans infections in murine oral candidiasis and epithelial cell models through mechanisms which promote the formation of tissue-damaging biofilms. Lactobacillus species have known inhibitory effects on biofilm formation of many microbes, including Streptococcus species. Agent-based modeling has great advantages as a means of exploring multifaceted relationships between organisms in complex environments such as biofilms.
As common commensals residing on mucosal tissues, Lactobacillus species are known to encourage health, while recent findings highlight the pathogenic roles of Streptococcus species in these environments. In this study we used a combination of in vivo imaging experiments and computational modeling to explore biofilm interactions between Streptococcus oralis, an accessory pathogen in oral Candidiasis, and Lactobacillus paracasei, an organism with known probiotic properties. A computational agent-based model was created where the two species only interact by competing for space and nutrients. Quantification of bacterial growth in live biofilms indicated that S. oralis biomass and cell numbers were much lower than predicted by the model. Two subsequent models were then created to examine more complex interactions between these species, one where L. paracasei secretes a surfactant, and another where L. paracasei secretes an inhibitor of S. oralis growth. Further biofilm experiments support the hypothesis that L. paracasei may secrete an inhibitor of S. oralis growth, although they do not exclude that a surfactant could also be involved. This contribution shows how agent-based modeling and experiments can be used in synergy to address multiple species biofilm interactions, with important roles in mucosal health and disease.
Optimization and control are important objectives across biology and biomedicine, and mathematical models are a key enabling technology. This paper reports a computational study of model-based multi-objective optimization in the setting of microbial ecology, using agent-based models. This modeling framework is wellsuited to the field, but is not amenable to standard control-theoretic approaches. Furthermore, due to computational complexity, simulation-based optimization approaches are often challenging to implement. This paper presents the results of an approach that combines control-dependent coarse-graining with Pareto optimization, applied to two models of multi-species bacterial biofilms. It shows that this approach can be successful for models whose computational complexity prevents effective simulation-based optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.