Interconnect properties position superconducting digital circuits to build large, high performance, power efficient digital systems. We report a board-to-board communication data link, which is a critical technological component that has not yet been addressed. Synchronous communication on chip and between chips mounted on a common board is enabled by the superconducting resonant clock/power network for Reciprocal Quantum Logic circuits. The data link is extended to board-to-board communication using isochronous communication, where there is a common frequency between boards but the relative phase is unknown. Our link uses over-sampling and configurable delay at the receiver to synchronize to the local clock phase. A single-bit isochronous data link has been demonstrated on- chip through a transmission line, and on a multi-chip module through a superconducting tape between driver and receiver with variable phase offset. Measured results demonstrated correct functionality with a clock margin of 3 dB at 3.6 GHz, and with 5 fJ/bit at 4.2 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.