Objective
The development of these updated clinical practice guidelines (CPGs) was commissioned by the American Association of Clinical Endocrinologists (AACE), The Obesity Society (TOS), American Society for Metabolic and Bariatric Surgery (ASMBS), Obesity Medicine Association (OMA), and American Society of Anesthesiologists (ASA) Boards of Directors in adherence with the AACE 2017 protocol for standardized production of CPGs, algorithms, and checklists.
Methods
Each recommendation was evaluated and updated based on new evidence from 2013 to the present and subjective factors provided by experts.
Results
New or updated topics in this CPG include: contextualization in an adiposity‐based chronic disease complications‐centric model, nuance‐based and algorithm/checklist‐assisted clinical decision‐making about procedure selection, novel bariatric procedures, enhanced recovery after bariatric surgery protocols, and logistical concerns (including cost factors) in the current health care arena. There are 85 numbered recommendations that have updated supporting evidence, of which 61 are revised and 12 are new. Noting that there can be multiple recommendation statements within a single numbered recommendation, there are 31 (13%) Grade A, 42 (17%) Grade B, 72 (29%) Grade C, and 101 (41%) Grade D recommendations. There are 858 citations, of which 81 (9.4%) are evidence level (EL) 1 (highest), 562 (65.5%) are EL 2, 72 (8.4%) are EL 3, and 143 (16.7%) are EL 4 (lowest).
Conclusions
Bariatric procedures remain a safe and effective intervention for higher‐risk patients with obesity. Clinical decision‐making should be evidence based within the context of a chronic disease. A team approach to perioperative care is mandatory, with special attention to nutritional and metabolic issues.
Objective: The development of these updated clinical practice guidelines (CPGs) was commissioned by the American Association of Clinical Endocrinologists (AACE), The Obesity Society, American Society of Metabolic and Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists Boards of Directors in adherence with the AACE 2017 protocol for standardized production of CPGs, algorithms, and checklists. Methods: Each recommendation was evaluated and updated based on new evidence from 2013 to the present and subjective factors provided by experts. Results: New or updated topics in this CPG include: contextualization in an adiposity-based chronic disease complications-centric model, nuance-based and algorithm/checklist-assisted clinical decision-making about procedure selection, novel bariatric procedures, enhanced recovery after bariatric surgery protocols, and logistical concerns (including cost factors) in the current health-care arena. There are 85 numbered recommendations that have updated supporting evidence, of which 61 are revised and 12 are new. Noting that there can be multiple recommendation statements within a single numbered recommendation, there are 31 (13%) Grade A, 42 (17%) Grade B, 72 (29%) Grade C, and 101 (41%) Grade D recommendations. There are 858 citations, of which 81 (9.4%) are evidence level (EL) 1 (highest), 562 (65.5%) are EL 2, 72 (8.4%) are EL 3, and 143 (16.7%) are EL 4 (lowest). Conclusion: Bariatric procedures remain a safe and effective intervention for higher-risk patients with obesity. Clinical decision-making should be evidence based within the context of a chronic disease. A team approach to perioperative care is mandatory, with special attention to nutritional and metabolic issues. Abbreviations: A1C = hemoglobin A1c; AACE = American Association of Clinical Endocrinologists; ABCD = adiposity-based chronic disease; ACE = American College of Endocrinology; ADA = American Diabetes Association; AHI = Apnea-Hypopnea Index; ASA = American Society of Anesthesiologists; ASMBS = American Society of Metabolic and Bariatric Surgery; BMI = body mass index; BPD = biliopancreatic diversion; BPD/DS = biliopancreatic diversion with duodenal switch; CI = confidence interval; CPAP = continuous positive airway pressure; CPG = clinical practice guideline; CRP = C-reactive protein; CT = computed tomography; CVD = cardiovascular disease; DBCD = dysglycemia-based chronic disease; DS = duodenal switch; DVT = deep venous thrombosis; DXA = dual-energy X-ray absorptiometry; EFA = essential fatty acid; EL = evidence level; EN = enteral nutrition; ERABS = enhanced recovery after bariatric surgery; FDA = U.S. Food and Drug Administration; G4GAC = Guidelines for Guidelines, Algorithms, and Checklists GERD = gastroesophageal reflux disease; GI = gastrointestinal; HCP = health-care professional(s); HTN = hypertension; ICU = intensive care unit; IGB = intragastric balloon(s); IV = intravenous; LAGB = laparoscopic adjustable gastric band; LAGBP = laparoscopic adjustable gastric banded plication; LGP = laparoscopic greater curvature (gastric) plication; LRYGB = laparoscopic Roux-en-Y gastric bypass; LSG = laparoscopic sleeve gastrectomy; MetS = metabolic syndrome; NAFLD = nonalcoholic fatty liver disease; NASH = nonalcoholic steatohepatitis; NSAID = nonsteroidal anti-inflammatory drug; OA = osteoarthritis; OAGB = one-anastomosis gastric bypass; OMA = Obesity Medicine Association; OR = odds ratio; ORC = obesity-related complication(s); OSA = obstructive sleep apnea; PE = pulmonary embolism; PN = parenteral nutrition; PRM = pulmonary recruitment maneuver; RCT = randomized controlled trial; RD = registered dietician; RDA = recommended daily allowance; RYGB = Roux-en-Y gastric bypass; SG = sleeve gastrectomy; SIBO = small intestinal bacterial overgrowth; TOS = The Obesity Society; TSH = thyroid-stimulating hormone; T1D = type 1 diabetes; T2D = type 2 diabetes; VTE = venous thromboembolism; WE = Wernicke encephalopathy; WHO = World Health Organization
The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/–) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/– and –/–) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 postwounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair.
PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and
Rag
gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.