While people infected with Leishmania can become refractory to reinfection, human vaccines have not yet been achieved. Glennie et al. identify a population of skin-resident Leishmania-specific memory T cells that produce IFN-γ and recruit circulating T cells to the skin in response to a subsequent parasitic infection. The findings indicate that a successful vaccine may be dependent on generating skin-resident memory T cells for an effective immune response.
Breaches in the skin barrier initiate an inflammatory immune response that is critical for successful wound healing. Innate lymphoid cells (ILCs) are a recently identified population of immune cells that reside at epithelial barrier surfaces such as the skin, lung and gut and promote pro-inflammatory or epithelial repair functions following exposure to allergens, pathogens or chemical irritants. However, the potential role of ILCs in regulating cutaneous wound healing remains undefined. Here, we demonstrate that cutaneous injury promotes an IL-33-dependent group 2 ILC (ILC2) response and that abrogation of this response impairs re-epithelialization and efficient wound closure. Additionally, we provide evidence suggesting that an analogous ILC2 response is operational in acute wounds of human skin. Together, these results indicate that IL-33-responsive ILC2s are an important link between the cutaneous epithelium and the immune system, acting to promote the restoration of skin integrity following injury.
The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/–) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/– and –/–) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 postwounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair.
Dogs with mucopolysaccharidosis VII (MPS VII)were injected intravenously at 2-3 days of age with a retroviral vector (RV) expressing canine -glucuronidase (cGUSB). Five animals received RV alone, and two dogs received hepatocyte growth factor (HGF) before RV in an attempt to increase transduction efficiency. Transduced hepatocytes expanded clonally during normal liver growth and secreted enzyme with mannose 6-phosphate. Serum GUSB activity was stable for up to 14 months at normal levels for the RV-treated dogs, and for 17 months at 67-fold normal for the HGF͞RV-treated dog. GUSB activity in other organs was 1.5-60% of normal at 6 months for two RV-treated dogs, which was likely because of uptake of enzyme from blood by the mannose 6-phosphate receptor. The body weights of untreated MPS VII dogs are 50% of normal at 6 months. MPS VII dogs cannot walk or stand after 6 months, and progressively develop eye and heart disease. RV-and HGF͞RV-treated MPS VII dogs achieved 87% and 84% of normal body weight, respectively. Treated animals could run at all times of evaluation for 6 -17 months because of improvements in bone and joint abnormalities, and had little or no corneal clouding and no mitral valve thickening. Despite higher GUSB expression, the clinical improvements in the HGF͞RV-treated dog were similar to those in the RV-treated animals. This is the first successful application of gene therapy in preventing the clinical manifestations of a lysosomal storage disease in a large animal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.