Despite multiple orbiter and landed missions to extraterrestrial bodies in the solar system, including Mars and Titan, we still know relatively little about the detailed chemical composition and quantity of organics and biomolecules in those bodies. For chemical analysis on astrobiologically relevant targets such as Mars, Europa, Titan, and Enceladus, instrumentation should be extremely sensitive and capable of analyzing a broad range of organic molecules. Microchip capillary electrophoresis (μCE) with laser-induced fluorescence (LIF) detection provides this required sensitivity and targets a wide range of relevant markers but, to date, has lacked the necessary degree of automation for spaceflight applications. Here we describe a fully integrated microfluidic device capable of performing automated end-to-end analyses of amino acids by μCE with LIF detection. The device integrates an array of pneumatically actuated valves and pumps for autonomous fluidic routing with an electrophoretic channel. Operation of the device, including manipulation of liquids for sample pretreatment and electrophoretic analysis, was performed exclusively via computer control. The device was validated by mixing of laboratory standards and labeling of amino acids with Pacific Blue succinimidyl ester followed by electrophoretic analysis. To our knowledge, this is the first demonstration of completely automated end-to-end μCE analyses on a single, fully integrated microfluidic device.
A simple off-column capillary electrophoretic (CE) assay for measuring acetyl coenzyme A carboxylase holoenzyme (holo-ACC) activity and inhibition was developed. The two reactions catalyzed by the holo-ACC components, biotin carboxylase (BC) and carboxyltransferase (CT), were simultaneous monitored in this assay. Acetyl coenzyme A (CoA), malonyl-CoA, adenosine triphosphate (ATP), and adenosine diphosphate (ADP) were separated by CE, and the depletion of ATP and acetyl-CoA as well as the production of ADP and malonyl-CoA were monitored. Inhibition of holo-ACC by the biotin carboxylase inhibitor, 2-amino-N,N-dibenzyloxazole-5-carboxamide, and the carboxyltransferase inhibitor, andrimid, was confirmed using this assay. A previously reported off-column CE assay for only the CT component of ACC was optimized, and an off-column CE assay for the BC component of ACC also was developed.
An assay was developed for phosphofructokinase-1 (PFK-1) using capillary electrophoresis (CE). In the glycolytic pathway, this enzyme catalyzes the rate-limiting step from fructose-6-phosphate and magnesium-bound adenosine triphosphate (Mg-ATP) to fructose-1,6-bisphosphate and magnesium-bound adenosine diphosphate (Mg-ADP). This enzyme has recently become a research target because of the importance of glycolysis in cancer and obesity. The CE assay for PFK-1 is based on the separation and detection by UV absorbance at 260 nm of Mg-ATP and Mg-ADP. The separation was enhanced by addition of Mg2+ to the separation buffer. Inhibition studies of PFK-1 by aurintricarboxylic acid and palmitoyl coenzyme A were also performed. An IC50 value was determined for aurintricarboxylic acid, and this value matched values in the literature obtained using coupled spectrophotometric assays. This assay for PFK-1 directly monitors the enzyme-catalyzed reaction, and the CE separation reduces the potential of spectral interference by inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.