This study was conducted to evaluate the dermal absorption of arsenic from residues present on the surface of wood preserved with chromated copper arsenate (CCA). The research reported herein used methods parallel to those of earlier research on the dermal absorption of radiolabeled arsenic (R. C. Wester et al., 1993, Fund. Appl. Toxicol. 20, 336-340), with modifications to allow use of environmental matrices that are not radiolabeled. These modifications include the surface area of application and dietary intake of arsenic, thus maximizing the potential for detection of dermally absorbed arsenic in exposed animals above diet-associated background levels of exposure. Two forms of arsenic were administered in this work. The first, arsenic in solution, was applied to the skin of monkeys to calibrate the model against prior absorption research and to serve as the basis of comparison for absorption of arsenic from CCA-treated wood residues. The second substrate was residue that resides on the surface of CCA-treated wood. Results from this research indicate that this study methodology can be used to evaluate dermally absorbed arsenic without the use of a radiolabel. Urinary excretion of arsenic above background levels can be measured following application of soluble arsenic, and absorption rates (0.6-4.4% absorption) are consistent with prior research using the more sensitive, radiolabeled technique. Additionally, the results show that arsenic is poorly absorbed from CCA-treated wood residues (i.e., does not result in urinary arsenic excretion above background levels).
Current knowledge of percutaneous absorption of arsenic is based on studies of rhesus monkeys using soluble arsenic in aqueous solution, and soluble arsenic mixed with soil (Wester et al., 1993). These studies produced mean dermal absorption rates in the range of 2.0-6.4% of the applied dose. Subsequently, questions arose as to whether these results represent arsenic absorption from environmental media. Factors such as chemical interactions, the presence of other metals, and the effects of weathering on environmental media all can affect the nature of arsenic and its potential for percutaneous absorption. Therefore, research specific to more relevant matrices is important. The focus of this effort is to outline study design considerations, including particle size, application rates, means of ensuring skin contact and appropriate statistical evaluation of the data. Appropriate reference groups are also important. The potential for background exposure to arsenic in the diet possibly obscuring a signal from a dermally applied dose of arsenic will also be addressed. We conclude that there are likely to be many site- or sample-specific factors that will control the absorption of arsenic, and matrix-specific analyses may be required to understand the degree of percutaneous absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.