The RNA-binding protein HuD binds to a regulatory element in the 3Ј untranslated region (3Ј UTR) of the GAP-43 mRNA. To investigate the functional significance of this interaction, we generated PC12 cell lines in which HuD levels were controlled by transfection with either antisense (pDuH) or sense (pcHuD) constructs. pDuH-transfected cells contained reduced amounts of GAP-43 protein and mRNA, and these levels remained low even after nerve growth factor (NGF) stimulation, a treatment that is normally associated with protein kinase C (PKC)-dependent stabilization of the GAP-43 mRNA and neuronal differentiation. Analysis of GAP-43 mRNA stability demonstrated that the mRNA had a shorter half-life in these cells. In agreement with their deficient GAP-43 expression, pDuH cells failed to grow neurites in the presence of NGF or phorbol esters. These cells, however, exhibited normal neurite outgrowth when exposed to dibutyryl-cAMP, an agent that induces outgrowth independently from GAP-43. We observed opposite effects in pcHuD-transfected cells. The GAP-43 mRNA was stabilized in these cells, leading to an increase in the levels of the GAP-43 mRNA and protein. pcHuD cells were also found to grow short spontaneous neurites, a process that required the presence of GAP-43. In conclusion, our results suggest that HuD plays a critical role in PKC-mediated neurite outgrowth in PC12 cells and that this protein does so primarily by promoting the stabilization of the GAP-43 mRNA. INTRODUCTIONIn addition to transcriptional factors, RNA-binding proteins play a critical role in the developmental control of gene expression. Among these is ELAV (embryonic lethal abnormal vision), an RNA-binding protein identified in Drosophila, where the gene is required for normal development and maintenance of the nervous system (Campos et al., 1985;Robinow et al., 1988). In higher vertebrates and mammals, four members of the ELAV-like family have been identified. These are also referred to as Hu proteins, namely HuR (also known as HuA), HuB (Hel-N1), HuC, and HuD, because these are targets of anti-Hu antibodies present in the sera of patients with paraneoplastic encephalomyelitis (Dalmau et al., 1992). HuR is ubiquitously expressed (Ma et al., 1996), while HuB, HuC, and HuD are expressed uniquely in the nervous system. Recent studies indicate that overexpression of neural ELAV-like proteins is sufficient to induce neuronal differentiation in vitro and in vivo (Wakamatsu and Weston, 1997; Akamatsu et al., 1999;Antic et al., 1999;Kasashima et al., 1999). While the exact function and targets of ELAV/Hu proteins remain to be fully elucidated, it seems likely that this family of RNA-binding proteins controls neuronal differentiation by selectively modulating the expression of neural-specific, growth-associated genes.The growth-associated protein GAP-43 is expressed in neurons primarily during the initial establishment and regeneration of neural connections (Skene, 1989;Benowitz and Routtenberg, 1997 Eggen et al., 1995;Chiaramello et al., 1996;Kinney et ...
Platelet-derived growth factors (PDGF) regulate cell proliferation, survival, morphology, and migration, as well as deposition and turnover of the extracellular matrix. Important roles for the A form of PDGF (PDGF-A) during connective tissue morphogenesis have been highlighted by the murine Patch mutation, which includes a deletion of the alpha subunit of the PDGF receptor. Homozygous (Ph/Ph) embryos exhibit multiple connective tissue defects including cleft face (involving the first branchial arch and frontonasal processes), incomplete heart septation, and heart valve abnormalities before they die in utero. Analyses of the cell biology underlying the defects in Ph/Ph embryos have revealed a deficit in a matrix metalloproteinase (MMP-2) and one of its activators (MT-MMP) that are likely to be involved in cell migration and tissue remodeling, two processes necessary for normal cardiac and craniofacial development. Morphogenesis of these structures requires infiltration of ectomesenchymal precursors and their subsequent deposition and remodeling of extracellular matrix components. First branchial arch and heart tissue from E10.5 embryos were examined by gelatin zymography and RT-PCR in order to characterize the expression of MMPs in these tissues. Of the MMPs examined, only MMP-2 and one of its activators, MT-MMP, were expressed in the first arch and heart at this stage of development. Tissues from Ph/Ph embryos exhibited a significant decrease in both MMP-2 and MT-MMP compared to tissues from normal embryos of the same developmental stage. In order to assess whether this decrease affects the motile activity of mesenchymal cells, cell migration from Ph/Ph branchial arch explants was compared to migration from normal arch tissue and found to be significantly less. In addition, the migratory ability of branchial arch cells from normal explants could be reduced in a similar manner using a specific MMP inhibitor. Although it is still unclear whether the MMP-2 reduction is a direct result of the absence of response of Ph/Ph cells to PDGF-A treatment of normal branchial arch cells in vitro with recombinant PDGF-AA significantly upregulated MMP-2 protein. Together, these results suggest that PDGF-A regulates MMP-2 expression and activation during normal development and that faulty proteinase expression may be at least partially responsible for the developmental defects exhibited by Ph/Ph embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.