Phycobiliproteins are water-soluble, light-harvesting proteins that are highly fluorescent due to linear tetrapyrrole chromophores, which makes them valuable as probes. Enzymes called bilin lyases usually attach these bilin chromophores to specific cysteine residues within the alpha and beta subunits via thioether linkages. A multiplasmid coexpression system was used to recreate the biosynthetic pathway for phycobiliproteins from the cyanobacterium Synechococcus sp. strain PCC 7002 in Escherichia coli. This system efficiently produced chromophorylated allophycocyanin (ApcA/ApcB) and ␣-phycocyanin with holoprotein yields ranging from 3 to 12 mg liter ؊1 of culture. This heterologous expression system was used to demonstrate that the CpcS-I and CpcU proteins are both required to attach phycocyanobilin (PCB) to allophycocyanin subunits ApcD (␣ AP-B ) and ApcF ( 18 ). The N-terminal, allophycocyanin-like domain of ApcE (L CM 99 ) was produced in soluble form and was shown to have intrinsic bilin lyase activity. Lastly, this in vivo system was used to evaluate the efficiency of the bilin lyases for production of -phycocyanin.
Cyanobacterial phycobiliproteins are brilliantly colored due to the presence of covalently attached chromophores called bilins, linear tetrapyrroles derived from heme. For most phycobiliproteins, these post-translational modifications are catalyzed by enzymes called bilin lyases; these enzymes ensure that the appropriate bilins are attached to the correct cysteine residues with the proper stereochemistry on each phycobiliprotein subunit. Phycobiliproteins also contain a unique, post-translational modification, the methylation of a conserved asparagine (Asn) present at beta-72, which occurs on the beta-subunits of all phycobiliproteins. We have identified and characterized several new families of bilin lyases, which are responsible for attaching PCB to phycobiliproteins as well as the Asn methyl transferase for beta-subunits in Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. All of the enzymes responsible for synthesis of holo-phycobiliproteins are now known for this cyanobacterium, and a brief discussion of each enzyme family and its role in the biosynthesis of phycobiliproteins is presented here. In addition, the first structure of a bilin lyase has recently been solved (PDB ID: 3BDR). This structure shows that the bilin lyases are most similar to the lipocalin protein structural family, which also includes the bilin-binding protein found in some butterflies.
Synechococcus sp. PCC 7002 and all other cyanobacteria that synthesize phycocyanin have a gene, cpcT, that is paralogous to cpeT, a gene of unknown function affecting phycoerythrin synthesis in Fremyella diplosiphon. A cpcT null mutant contains 40% less phycocyanin than wild type and produces smaller phycobilisomes with red-shifted absorbance and fluorescence emission maxima. Phycocyanin from the cpcT mutant has an absorbance maximum at 634 nm compared with 626 nm for the wild type. The phycocyanin -subunit from the cpcT mutant has slightly smaller apparent molecular weight on SDS-PAGE. Purified phycocyanins from the cpcT mutant and wild type were cleaved with formic acid, and the products were analyzed by SDS-PAGE. No phycocyanobilin chromophore was bound to the peptide containing Cys-153 derived from the phycocyanin -subunit of the cpcT mutant. Recombinant CpcT was used to perform in vitro bilin addition assays with apophycocyanin (CpcA/CpcB) and phycocyanobilin. Depending on the source of phycocyanobilin, reaction products with CpcT had absorbance maxima between 597 and 603 nm as compared with 638 nm for the control reactions, in which mesobiliverdin becomes covalently bound. After trypsin digestion and reverse phase high performance liquid chromatography, the CpcT reaction product produced one major phycocyanobilin-containing peptide. This peptide had a retention time identical to that of the tryptic peptide that includes phycocyanobilin-bound, cysteine 153 of wild-type phycocyanin. The results from characterization of the cpcT mutant as well as the in vitro biochemical assays demonstrate that CpcT is a new phycocyanobilin lyase that specifically attaches phycocyanobilin to Cys-153 of the phycocyanin -subunit. Cyanobacteria and red algae contain peripheral, light-harvesting complexes called phycobilisomes (PBS).2 These macromolecular complexes are composed of two types of proteins: colored phycobiliproteins (PBPs), which absorb and transmit light energy to the photosynthetic reaction centers, and non-pigmented linker proteins, which direct the assembly of PBS (1). In many cyanobacteria, including Synechococcus sp. PCC 7002, PBS are composed of two blue-colored PBPs: phycocyanin (PC) and allophycocyanin (AP). These PBPs are composed of two subunits, ␣ and  (2), which are members of the globin superfamily (3). The ␣-and -subunits of PC and AP carry at least one linear tetrapyrrole chromophore (bilin) called phycocyanobilin (PCB), which is covalently attached to specific cysteine residues via thioether linkages (see supplemental Fig. 1) (4). The bilin chromophores of PBPs are derived from heme and are related to the phytochromobilin (5), the photoisomerizable chromophore of the plant protein, phytochrome (6). X-ray crystallographic analyses of PC have shown that the chiral C3 1 carbons of the PCB chromophores attached at cysteines ␣84 and 82 are in the R configuration, whereas the C3
The Synechococcus sp. PCC 7002 genome encodes three genes, denoted cpcS-I, cpcU, cpcV, with sequence similarity to cpeS. CpcS-I copurified with His 6 -tagged (HT) CpcU as a heterodimer, CpcSU. When CpcSU was assayed for bilin lyase activity in vitro with phycocyanobilin (PCB) and apophycocyanin, the reaction product had an absorbance maximum of 622 nm and was highly fluorescent ( max ؍ 643 nm). In control reactions with PCB and apophycocyanin, the products had absorption maxima at 635 nm and very low fluorescence yields, indicating they contained the more oxidized mesobiliverdin (Arciero, D. M., Bryant, D. A., and Glazer, A. N. (1988) J. Biol. Chem. 263, 18343-18349). Tryptic peptide mapping showed that the CpcSU-dependent reaction product had one major PCB-containing peptide that contained the PCB binding site Cys-82. The CpcSU lyase was also tested with recombinant apoHT-allophycocyanin (aporHT-AP) and PCB in vitro. AporHT-AP formed an ApcA/ApcB heterodimer with an apparent mass of ϳ27 kDa. When aporHT-AP was incubated with PCB and CpcSU, the product had an absorbance maximum of 614 nm and a fluorescence emission maximum at 636 nm, the expected maxima for monomeric holo-AP. When no enzyme or CpcS-I or CpcU was added alone, the products had absorbance maxima between 645 and 647 nm and were not fluorescent. When these reaction products were analyzed by gel electrophoresis and zinc-enhanced fluorescence emission, only the reaction products from CpcSU had PCB attached to both AP subunits. Therefore, CpcSU is the bilin lyase-responsible for attachment of PCB to Cys-82 of CpcB and Cys-81 of ApcA and ApcB.
All phycobiliproteins contain a conserved, post-translational modification on asparagine 72 of their -subunits. Methylation of this Asn to produce ␥-N-methylasparagine has been shown to increase energy transfer efficiency within the phycobilisome and to prevent photoinhibition. We report here the biochemical characterization of the product of sll0487, which we have named cpcM, from the cyanobacterium Synechocystis sp. PCC 6803. Recombinant apo-phycocyanin and apo-allophycocyanin subunits were used as the substrates for assays with [methyl-3 H]Sadenosylmethionine and recombinant CpcM. CpcM methylated the -subunits of phycobiliproteins (CpcB, ApcB, and ApcF) and did not methylate the corresponding ␣-subunits (CpcA, ApcA, and ApcD), although they are similar in primary and tertiary structure. CpcM preferentially methylated its CpcB substrate after chromophorylation had occurred at Cys 82 . CpcM exhibited lower activity on trimeric phycocyanin after complete chromophorylation and oligomerization had occurred. Based upon these in vitro studies, we conclude that this post-translational modification probably occurs after chromophorylation but before trimer assembly in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.