In normal human cells, oncogene-induced senescence (OIS) depends on induction of DNA damage response. Oxidative stress and hyperreplication of genomic DNA have been proposed as major causes of DNA damage in OIS cells. Here, we report that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage in normal human fibroblasts (NHFs) undergoing HRAS(G12V)-induced senescence. NHF-HRAS(G12V) cells underexpressed thymidylate synthase (TS) and ribonucleotide reductase (RR), two enzymes required for the entire de novo deoxyribonucleotide biosynthesis, and possessed low dNTP levels. Chromatin at the promoters of the genes encoding TS and RR was enriched with retinoblastoma tumor suppressor protein and histone H3 tri-methylated at lysine 9. Importantly, ectopic coexpression of TS and RR or addition of deoxyribonucleosides substantially suppressed DNA damage, senescence-associated phenotypes, and proliferation arrest in two types of NHF-expressing HRAS(G12V). Reciprocally, short hairpin RNA-mediated suppression of TS and RR caused DNA damage and senescence in NHFs, although less efficiently than HRAS(G12V). However, overexpression of TS and RR in quiescent NHFs did not overcome proliferation arrest, suggesting that unlike quiescence, OIS requires depletion of dNTP pools and activated DNA replication. Our data identify a previously unknown role of deoxyribonucleotides in regulation of OIS.
Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination. The discovery of nonnucleoside, reversible, small-molecule inhibitors with greater specificity against hRRM1 is a key step in the development of more effective treatments for cancer. Here, we report the identification and characterization of a unique nonnucleoside small-molecule hRR inhibitor, naphthyl salicylic acyl hydrazone (NSAH), using virtual screening, binding affinity, inhibition, and cell toxicity assays. NSAH binds to hRRM1 with an apparent dissociation constant of 37 μM, and steady-state kinetics reveal a competitive mode of inhibition. A 2.66-Å resolution crystal structure of NSAH in complex with hRRM1 demonstrates that NSAH functions by binding at the catalytic site (C-site) where it makes both common and unique contacts with the enzyme compared with NDP substrates. Importantly, the IC 50 for NSAH is within twofold of gemcitabine for growth inhibition of multiple cancer cell lines, while demonstrating little cytotoxicity against normal mobilized peripheral blood progenitor cells. NSAH depresses dGTP and dATP levels in the dNTP pool causing S-phase arrest, providing evidence for RR inhibition in cells. This report of a nonnucleoside reversible inhibitor binding at the catalytic site of hRRM1 provides a starting point for the design of a unique class of hRR inhibitors.ribonucleotide reductase | cancer chemotherapy | small molecule | drug discovery | enzyme regulation
NB4 cells are the only bona fide in vitro model of human acute promyelocytic leukemia. We have examined cytidine and guanosine transport in this cell line and characterized a novel guanosine-specific transporter. Cytidine transport occurred predominately by equilibrative nitrobenzylthioinosine (NBMPR)-sensitive (es) transport. In the presence of Na ؉ , guanosine at various concentrations accumulated at least 6-fold above equilibrium. The initial rate of guanosine transport in Na ؉ buffer decreased by 75% with the addition of 1 M NBMPR and the IC 50 for NBMPR inhibition was 0.7 ؎ 0.1 nM. Replacement of Na ؉ with choline also resulted in a 75% decrease in total guanosine transport. The potent inhibition of guanosine transport by NBMPR and the loss of transport in choline suggested that a Na ؉ -dependent NBMPR-sensitive transporter was responsible for the majority of guanosine uptake. This concentrative, sensitive transporter is Na ؉ dependent with a stoichiometric coupling ratio of 1:1. This novel transporter, referred to as csg, is guanosine-specific with total guanosine transport inhibited by only 50% in the presence of 1 mM competing nucleosides. HL-60, acute myelocytic leukemia cells, do not exhibit csg activity while L1210, murine acute lymphocytic leukemia cells, exhibit csg transport. The presence of the csg transporter suggests an important role for guanosine in particular forms of leukemia and may provide a new target for cytotoxic therapy.Purine and pyrimidine nucleotides, and their related metabolic products, participate in numerous biological processes.
The down-regulation of dominant oncogenes, including C-MYC, in tumor cells often leads to the induction of senescence via mechanisms that are not completely identified. In the current study, we demonstrate that MYC-depleted melanoma cells undergo extensive DNA damage that is caused by the underexpression of thymidylate synthase (TS) and ribonucleotide reductase (RR) and subsequent depletion of deoxyribonucleoside triphosphate pools. Simultaneous genetic inhibition of TS and RR in melanoma cells induced DNA damage and senescence phenotypes very similar to the ones caused by MYC-depletion. Reciprocally, overexpression of TS and RR in melanoma cells or addition of deoxyribo-nucleosides to culture media substantially inhibited DNA damage and senescence-associated phenotypes caused by C-MYC depletion. Our data demonstrate the essential role of TS and RR in C-MYC-dependent suppression of senescence in melanoma cells.
Radiation sensitization by 2 ¶,2 ¶-difluoro-2 ¶-deoxycytidine (dFdCyd) has correlated with dATP depletion [dFdCDPmediated inhibition of ribonucleotide reductase (RR)] and S-phase accumulation. We hypothesized that radiosensitization by dFdCyd is due to nucleotide misincorporations in the presence of deoxynucleotide triphosphate pool imbalances, which, if not repaired, augments cell death following irradiation. The ability of dFdCyd to produce misincorporations was measured as pSP189 plasmid mutations in hMLH1-deficient [mismatch repair (MMR) deficient] and hMLH1-expressing (MMR proficient) HCT116 cells. Only MMR-deficient cells showed a significant increase in nucleotide misincorporations (2-to 3-fold increase; P V 0.01) after radiosensitizing concentrations of dFdCyd F 5 Gy radiation, which persisted for at least 96 h. dFdCyd (10 nmol/L) did not radiosensitize MMR-proficient HCT116 or A549 cells, but following small interfering RNA -mediated suppression of hMLH1, this concentration produced excellent radiosensitization (radiation enhancement ratios = 1.6 F 0.1 and 1.5 F 0.1, respectively; P < 0.05) and a 2.5-fold increase in mutation frequency in A549 cells. Cytosine arabinoside (1-B-D-arabinofuranosylcytosine), which can be incorporated into DNA but does not inhibit RR, failed to radiosensitize MMR-deficient cells or increase mutation frequency in the MMR-deficient and MMR-proficient cells. However, the RR inhibitor hydroxyurea radiosensitized MMR-deficient cells and increased nucleotide misincorporations (z5-fold increase; P < 0.05), thus further implicating the inhibition of RR as the mechanism underlying radiosensitization by dFdCyd. These data showed that the presence and persistence of mismatched nucleotides is integral to radiosensitization by dFdCyd and suggest a role for hMLH1 deficiency in eliciting the radiosensitizing effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.