Operation planning for a coordinated multi-reservoir is a complex and challenging task due to the inherent uncertainty in inflow. In this study, we suggest the use of a new, multi-stage and scenariobased stochastic linear program with a recourse model incorporating the meteorological weather prediction information for daily, coordinated, multi-reservoir operation planning. Stages are defined as prediction lead-time spans of the weather prediction system. The multi-stage scenarios of the stochastic model are formed considering the reliability of rainfall prediction for each lead-time span.Future inflow scenarios are generated by a rainfall-runoff model based on the rainfall forecast. For short-term stage (2 days) scenarios, the regional data assimilation and prediction system (RDAPS) information is employed, and for mid-term stage (more than 2 days) scenarios, precipitation from the global data assimilation and prediction system (GDAPS) is used as an input for the rainfall-runoff model. After the 10th day (third stage), the daily historical rainfall data are used following the ensemble streamflow prediction (ESP) procedure. The model is applied to simulate the daily reservoir operation of the Nakdong River basin in Korea in a real-time operational environment. The expected benefit of the stochastic model is markedly superior to that of the deterministic model with average rainfall information. Our study results confirm the effectiveness of the stochastic model in real-time operation with meteorological forecasts and the presence of inflow uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.